Gina A Pecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1659549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Oxofunctionalization of Cyclohexane and Benzyl Alcohol over BiOI/TiO2 Heterojunction. Catalysts, 2022, 12, 318.	3.5	2
2	Kinetic and structural understanding of bulk and supported vanadium-based catalysts for furfural oxidation to maleic anhydride. Catalysis Science and Technology, 2021, 11, 6477-6489.	4.1	1
3	BiOCl ultrathin nanosheets modified with Fe3+ for enhanced visible light driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113211.	3.9	12
4	Black Trumpet Mushroom-like ZnS incorporated with Cu3P: Noble metal free photocatalyst for superior photocatalytic H2 production. Journal of Colloid and Interface Science, 2021, 590, 82-93.	9.4	27
5	Novel MoSe2–Ni(OH)2 nanocomposite as an electrocatalyst for high efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 32471-32479.	7.1	9
6	Potassium niobates substituted with titanium as novel photocatalysts. Materials Letters, 2021, 305, 130817.	2.6	0
7	Tailoring the stability and photo-Fenton activity of Fe-modified nanostructured silicates by tuning the metal speciation from different synthesis conditions. Molecular Catalysis, 2020, 481, 110217.	2.0	5
8	Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356, 330-338.	4.4	9
9	Magnetic Pt single and double core-shell structures for the catalytic selective hydrogenation of cinnmaladehyde. Pure and Applied Chemistry, 2020, 92, 413-427.	1.9	3
10	Influence of phosphorous upon the formation of DMPO- OH and POBN-O2Â ⁻ spin-trapping adducts in carbon-supported P-promoted Fe-based photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112362.	3.9	10
11	Titanium substituted potassium tantalates (KTaxTi1-xO3 x= 1.0, 0.8, 0.6, 0.5): Catalysts for the methyl phenyl sulfide oxidation. Molecular Catalysis, 2020, 482, 110685.	2.0	4
12	Pd-Co catalysts prepared from palladium-doped cobalt titanate precursors for chemoselective hydrogenation of halonitroarenes. Molecular Catalysis, 2020, 482, 110702.	2.0	2
13	Ultrasound-Assisted Room Temperature Synthesis of Flower-Like-Bi ₅ O ₇ I-Incorporated Reduced Graphene Oxide Nanosheets for Highly Efficient Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2020, 124, 20898-20910	3.1	12
14	The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Applied Catalysis A: General, 2020, 595, 117513.	4.3	10
15	The Effect of the ZrO2 Loading in SiO2@ZrO2-CaO Catalysts for Transesterification Reaction. Materials, 2020, 13, 221.	2.9	7
16	Effective coupling of Cu (II) with BiOCl nanosheets for high performance electrochemical supercapacitor and enhanced photocatalytic applications. Applied Surface Science, 2020, 521, 146362.	6.1	39
17	Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes. Journal of Catalysis, 2020, 385, 224-237.	6.2	29
18	A simple synthesis way to obtain iron-doped TiO2 nanoparticles as photocatalytic surfaces. Chemical Physics Letters, 2019, 732, 136643.	2.6	19

#	Article	IF	CITATIONS
19	Lanthanum oxide behavior in La2O3-Al2O3 and La2O3-ZrO2 catalysts with application in FAME production. Fuel, 2019, 253, 400-408.	6.4	34

Selective oxidation of cyclohexane to cyclohexanol by BiOI under visible light: Role of the ratio (1 1) Tj ETQq000 rg BT Overlock 10 Tf 5

21	Magnetic Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) as Catalysts for the Selective Hydrogenation of Cinnamaldehyde. Effect of the Nature of the Metal Oxide. Materials, 2019, 12, 413.	2.9	5
22	Magnetic Fe3O4@SiO2–Pt and Fe3O4@SiO2–Pt@SiO2 Structures for HDN of Indole. Materials, 2019, 12, 3878.	2.9	3
23	Selective styrene oxidation on alkaline tantalates ATaO3 (A = Li, Na, K) as heterogeneous catalysts. Catalysis Communications, 2019, 119, 28-32.	3.3	19
24	Environmentally friendly heterogeneous sol–gel La2O3–Al2O3 mixed oxides for transesterification reaction. Chemical Papers, 2018, 72, 2353-2362.	2.2	8
25	Preparation and characterization of a supported system of Ni2P/Ni12P5 nanoparticles and their use as the active phase in chemoselective hydrogenation of acetophenone. Nanotechnology, 2018, 29, 215702.	2.6	14
26	Influence of the synthesis conditions on the incorporation of B and the acidity in B-MCM-41 materials. Microporous and Mesoporous Materials, 2018, 258, 269-276.	4.4	5
27	Stable reduced Ni catalysts for xylose hydrogenation in aqueous medium. Catalysis Today, 2018, 310, 59-67.	4.4	17
28	Sol–gel La 2 O 3 –ZrO 2 mixed oxide catalysts for biodiesel production. Journal of Energy Chemistry, 2018, 27, 565-572.	12.9	46
29	TOXICITY STUDIES DURING THE DEGRADATION OF PENTACHLOROPHENOL BY OZONATION IN THE PRESENCE	1 9	2
		1,2	
30	Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 2017, 279, 209-216.	4.4	15
30 31	 Or Wh02/H02. Journal of the Chilean Chemical Society, 2018, 63, 4090-4097. Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 2017, 279, 209-216. Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74. 	4.4	15 73
30 31 32	 OF WHO2/HO2. Journal of the Chilean Chemical Society, 2018, 63, 4090-4097. Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 2017, 279, 209-216. Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74. Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage. Bulletin of Materials Science, 2017, 40, 271-280. 	1.2 4.4 20.2 1.7	15 73 7
30 31 32 33	 Or Milo2(1102.) Journal of the Chiean Chemical Society, 2018, 63, 4090-4097. Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 2017, 279, 209-216. Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74. Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage. Bulletin of Materials Science, 2017, 40, 271-280. Enhancing xylose aqueous-phase hydrogenation catalytic performance of A-site Ce substituted and B-site Rh doped reduced perovskites. Molecular Catalysis, 2017, 436, 182-189. 	 4.4 20.2 1.7 2.0 	15 73 7 13
30 31 32 33 34	Or WinO2(1002.)Journal of the Chilean Chemical Society, 2016, 63, 4090-4097. Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 2017, 279, 209-216. Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74. Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage. Bulletin of Materials Science, 2017, 40, 271-280. Enhancing xylose aqueous-phase hydrogenation catalytic performance of A-site Ce substituted and B-site Rh doped reduced perovskites. Molecular Catalysis, 2017, 436, 182-189. Dry reforming of methane on grafted-supported Rh catalysts: effect of the metal-support interaction on the reaction rate. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 459-475.	 4.4 20.2 1.7 2.0 1.7 	15 73 7 13 11
 30 31 32 33 34 35 	 Or WhO2, HO2, HO2, HO2, HO2, HO2, HO2, HO2, H	 4.4 20.2 1.7 2.0 1.7 4.4 	15 73 7 13 11 17

#	Article	IF	CITATIONS
37	Perovskite as nickel catalyst precursor – impact on catalyst stability on xylose aqueous-phase hydrogenation. RSC Advances, 2016, 6, 67817-67826.	3.6	22
38	K2O supported on sol-gel CeO2-Al2O3 and La2O3-Al2O3 catalysts for the transesterification reaction of canola oil. Journal of Molecular Catalysis A, 2016, 423, 503-510.	4.8	17
39	Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of Co catalysts. Catalysis Science and Technology, 2016, 6, 7289-7306.	4.1	56
40	Alkaline niobates ANbO ₃ (A = Li, Na, K) as heterogeneous catalysts for dipropyl sulfide oxidation. RSC Advances, 2016, 6, 102015-102022.	3.6	11
41	Effect of A-site deficiency in LaMn0.9Co0.1O3 perovskites on their catalytic performance for soot combustion. Materials Research Bulletin, 2016, 81, 134-141.	5.2	28
42	Effect of activation atmosphere in the Fischer–Tropsch Synthesis using a "quasi-model―catalyst of γ-Fe2O3 nanoparticles supported on SBA-15. Journal of Catalysis, 2016, 335, 36-46.	6.2	14
43	Heterogeneous hydrogenation of nitroaromatic compounds on gold catalysts: Influence of titanium substitution in MCM-41 mesoporous supports. Applied Catalysis A: General, 2016, 517, 110-119.	4.3	17
44	Electronic properties and catalytic performance for DME combustion of lanthanum manganites with partial B-site substitution. Journal of Catalysis, 2016, 338, 47-55.	6.2	19
45	Active potassium niobates and titanoniobates as catalysts for organic sulfide remediation. Catalysis Communications, 2016, 76, 58-61.	3.3	7
46	CATALYTIC COMBUSTION OF SOOT ON Ce-DOPED LANTHANUM COBALTITES. Journal of the Chilean Chemical Society, 2014, 59, 2725-2730.	1.2	2
47	Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Applied Catalysis B: Environmental, 2014, 147, 193-202.	20.2	91
48	Soot Oxidation on Silver-Substituted LaMn _{0.9} Co _{0.1} O ₃ Perovskites. Industrial & Engineering Chemistry Research, 2014, 53, 10090-10096.	3.7	35
49	Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward É-caprolactam. Microporous and Mesoporous Materials, 2014, 200, 110-116.	4.4	27
50	Ni nanoparticles prepared from Ce substituted LaNiO3 for the guaiacol conversion. Applied Catalysis A: General, 2014, 481, 1-10.	4.3	37
51	Catalytic oxidation of soot over alkaline niobates. Journal of Alloys and Compounds, 2013, 551, 255-261.	5.5	28
52	Activity of KNbO3 as catalyst for soot combustion: Effect of the preparation method. Applied Catalysis A: General, 2013, 453, 341-348.	4.3	22
53	Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology, 2013, 24, 175601.	2.6	88
54	EFFECT OF COOPER ON THE CATALYTIC ACTIVITY FOR ACETYLACETATE COMBUSTION OF Ca1-x Cu xZrO3 AND Sr1-xCu xZrO3 PEROVSKITE-TYPE OXIDES. Journal of the Chilean Chemical Society, 2013, 58, 1941-1946.	1.2	1

#	Article	IF	CITATIONS
55	Ruthenium promotion of Co/SBA-15 catalysts for Fischer-Tropsch synthesis in slurry-phase reactors. Journal of Natural Gas Chemistry, 2012, 21, 722-728.	1.8	22
56	REACTION KINETICS OF METHANE COMBUSTION OVER La1-x Ca FeO3 PEROVSKITES. Journal of the Chilean Chemical Society, 2011, 56, 895-900.	1.2	3
57	Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 81-87.	1.8	27
58	Catalytic performance in methane combustion of rare-earth perovskites RECo0.50Mn0.50O3 (RE: La, Er,) Tj ETQo	0 0 0 rgB ⁻ 4.4	Г /Overlock 1 15
59	Study of the effect of cobalt content in obtaining olefins and paraffins using the Fischer-Tropsch reaction. Catalysis Today, 2011, 172, 152-157.	4.4	14
60	Effect of Bâ€site cation on the catalytic activity of La _{1â^'x} Ca _x BO ₃ (B) Tj E Biotechnology, 2011, 86, 1067-1073.	ETQq0 0 0 3.2	rgBT /Overlo 47
61	Relation between defects and catalytic activity of calcium doped LaFeO3 perovskite. Solid State Ionics, 2011, 187, 27-32.	2.7	75
62	Fischer–Tropsch synthesis over LaFe1â^'xCoxO3 perovskites from a simulated biosyngas feed. Applied Catalysis A: General, 2010, 381, 253-260.	4.3	49
63	Effect of Ca-substitution in La1â [~] 'xCaxFeO3 perovskites on the catalytic activity for soot combustion. Fuel Processing Technology, 2010, 91, 546-549.	7.2	30
64	Chiral Pt/ZrO2 Catalysts. Enantioselective Hydrogenation of 1-phenyl-1,2-propanedione. Molecules, 2010, 15, 3428-3440.	3.8	2
65	Thermal stability against reduction of LaMn1â^'yCoyO3 perovskites. Materials Research Bulletin, 2009, 44, 846-853.	5.2	42
66	Effect of additive Ag on the physicochemical and catalytic properties of LaMn0.9Co0.1O3.5 perovskite. Applied Catalysis A: General, 2009, 371, 78-84.	4.3	19
67	Doping of lanthanum cobaltite by Mn: thermal, magnetic, and catalytic effect. Journal of Materials Science, 2008, 43, 5282-5290.	3.7	5
68	Surface properties and performance for VOCs combustion of LaFe1â^'yNiyO3 perovskite oxides. Journal of Solid State Chemistry, 2008, 181, 905-912.	2.9	85
69	Magnetic properties of Mn-substituted GdCoxMn1â^'xO3 and LaCoxMn1â^'xO3. Journal of Magnetism and Magnetic Materials, 2008, 320, e61-e64.	2.3	16
70	Effect of the preparation method on the catalytic activity of La1â^'xCaxFeO3 perovskite-type oxides. Catalysis Today, 2008, 133-135, 420-427.	4.4	90
71	Structural, magnetic and catalytic properties of perovskite-type mixed oxides LaMn1â^'yCoyO3 (y=0.0, 0.1,) Tj E	[Qq1 1 0.7 	′84314 rgBT
72	Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green	9.0	38

Chemistry, 2008, 10, 647.

#	ARTICLE PEROVSKITAS manganitas con Mn sustituido	IF	CITATIONS
73	TRCo _x Mn _{1-x} O ₃ : comparación entre las propiedades magnéticas de LaCo _x Mn _{1-x} O ₃ y de GdCo _{x<:/sub>Mn<:sub>1-x} O<:sub>3<:/sub>.Boletin De La	1.9	2
74	Sociedad Española De Ceramica Y Vidrio, 2008, 47, 207-212. Structure and activity of LaMn1â^'yCoyO3 perovskites. Reaction Kinetics and Catalysis Letters, 2007, 91, 353-359.	0.6	9
75	Mesostructured silicas as supports for palladium-catalyzed hydrogenation of phenyl acetylene and 1-phenyl-1-hexyne to alkenes. Journal of Molecular Catalysis A, 2006, 247, 145-152.	4.8	39
76	Catalytic combustion of ethyl acetate over ceria-promoted platinum supported on Al2O3 and ZrO2 catalysts. Journal of Sol-Gel Science and Technology, 2006, 37, 169-174.	2.4	6
77	Catalytic combustion of methane over LaFeO3 perovskites: the influence of coprecipitation pH and ageing time. Journal of the Chilean Chemical Society, 2006, 51, .	1.2	5
78	CATALYTIC OZONATION OF OXALIC ACID WITH MnO2/TiO2 AND Rh/TiO2. Journal of the Chilean Chemical Society, 2006, 51, .	1.2	3
79	Effect of the promoter and support on the catalytic activity of PdCeO2-supported catalysts for CH4combustion. Journal of Chemical Technology and Biotechnology, 2005, 80, 268-272.	3.2	17
80	A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures. Journal of Molecular Catalysis A, 2005, 231, 67-74.	4.8	27
81	Ordered mesoporous silicates of MCM-41 type as support of pt catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Reaction Kinetics and Catalysis Letters, 2005, 87, 121-128.	0.6	7
82	Sol-gel titania modified with Ba and Li atoms for catalytic combustion. Journal of Materials Science, 2004, 39, 565-570.	3.7	4
83	Micro-Raman study of indium doped zirconia obtained by sol–gel. Journal of Non-Crystalline Solids, 2004, 345-346, 116-119.	3.1	17
84	Pd-CeO2 and Pd-La2O3/alumina-supported catalysts: their effect on the catalytic combustion of methane. Journal of Non-Crystalline Solids, 2004, 345-346, 624-627.	3.1	20
85	Catalytic Combustion of Methane on Fe-TiO2 Catalysts Prepared by Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2003, 27, 205-214.	2.4	36
86	Alkynes Hydrogenation over Pd-Supported Catalysts. Catalysis Letters, 2003, 91, 115-121.	2.6	32
87	Kinetics of methane combustion on Fe2O3/TiO2catalysts. Reaction Kinetics and Catalysis Letters, 2003, 80, 375-381.	0.6	4
88	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 865-867.	2.4	7
89	Effect of precursors on surface and catalytic properties of Fe/TiO2catalysts. Journal of Chemical Technology and Biotechnology, 2002, 77, 944-949.	3.2	32
90	Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts. Catalysis Today, 2002, 76, 121-131.	4.4	92

#	Article	IF	CITATIONS
91	Liquid-phase hydrogenation of citral over Ir-supported catalysts. Journal of Molecular Catalysis A, 2002, 179, 293-299.	4.8	56
92	Characterization of iron-doped titania sol–gel materials. Journal of Materials Chemistry, 2002, 12, 714-718.	6.7	88
93	Surface Structures of Rhâ^'Cu Solâ^'Gel Catalysts and Performance for Crotonaldehyde Hydrogenation. Langmuir, 2001, 17, 522-527.	3.5	38
94	Effect Of The Solvent Used During Preparation On The Properties Of Pt/Al2O3And Ptâ^'Sn/Al2O3Catalysts. Industrial & Engineering Chemistry Research, 2001, 40, 5557-5563.	3.7	21
95	Photocatalytic degradation of pentachlorophenol on TiO2 sol–gel catalysts. Chemosphere, 2001, 43, 141-146.	8.2	105
96	Hydrogenation of Cinnamaldehyde on Ir/Î ³ -Al2O3 Catalysts. Influence of the Surface Acidity. Reaction Kinetics and Catalysis Letters, 2001, 74, 127-133.	0.6	4
97	Catalytic combustion of methane on Pd–Cu/SiO2 catalysts. Catalysis Today, 2000, 62, 209-217.	4.4	49
98	Crotonaldehyde hydrogenation on Ir supported catalysts. Journal of Molecular Catalysis A, 2000, 164, 245-251.	4.8	54
99	Promoting effect of Mo on the selective hydrogenation of cinnamaldehyde on Rh/SiO2 catalysts. Catalysis Letters, 2000, 69, 27-32.	2.6	30
100	CATALYTIC COMBUSTION OF TOLUENE ON Pd-Cu/SiO2 CATALYSTS. Journal of the Chilean Chemical Society, 2000, 45, .	0.1	3
101	Resistance to sulfur poisoning of Rh supported catalysts. Reaction Kinetics and Catalysis Letters, 1999, 67, 177-182.	0.6	1
102	Methane combustion on sol-gel Rh/ZrO2-SiO2 catalysts. Journal of Chemical Technology and Biotechnology, 1999, 74, 897-903.	3.2	4
103	Methane Combustion on Pd/SiO2Sol Gel Catalysts. Journal of Catalysis, 1998, 179, 309-314.	6.2	53
104	Methane combustion on Rh/ZrO2 catalysts. Applied Catalysis B: Environmental, 1998, 17, L7-L13.	20.2	40
105	Photodegradation of pentachlorophenol on ZnO. Journal of Chemical Technology and Biotechnology, 1998, 72, 105-110.	3.2	71
106	Resistance to sulphur poisoning of alumina-supported iridium catalysts in toluene hydrogenation and methylcyclohexane dehydrogenation. Journal of Chemical Technology and Biotechnology, 1998, 73, 1-6.	3.2	12
107	Changes induced by metal oxide promoters in the performance of Rh–Mo/ZrO2 catalysts during CO and CO2 hydrogenation. Journal of Molecular Catalysis A, 1998, 129, 269-278.	4.8	15
108	Characterization and catalytic activity of Al2O3-supported Pt-Co catalysts. Catalysis Letters, 1997, 43, 85-89.	2.6	19

#	Article	IF	CITATIONS
109	o-xylene hydrogenation on supported ruthenium catalysts. Catalysis Letters, 1997, 46, 71-75.	2.6	33
110	Pt/SiO2 catalysts obtained by the sol-gel method. Influence of the pH of gelation on the surface and catalytic properties. Reaction Kinetics and Catalysis Letters, 1997, 61, 237-244.	0.6	11
111	The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts. Applied Catalysis A: General, 1997, 163, 145-152.	4.3	45
112	Influence of the nature of the platinum precursor on the surface properties and catalytic activity of alumina-supported catalysts. Catalysis Letters, 1996, 37, 193-197.	2.6	52
113	The effect of Mo on the catalytic and surface properties of Rh-Mo/ZrO2 catalysts. Catalysis Letters, 1995, 34, 331-341.	2.6	8
114	Methylcyclohexane dehydrogenation on Rh/γ-Al2O3 catalysts. Journal of Chemical Technology and Biotechnology, 1994, 59, 233-236.	3.2	3