Eric Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1659240/publications.pdf Version: 2024-02-01

FRICLAM

#	Article	IF	CITATIONS
1	Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721.	1.6	14
2	Wolffia, a minimalist plant and synthetic biology chassis. Trends in Plant Science, 2022, 27, 430-439.	4.3	13
3	High Saccharification, Low Lignin, and High Sustainability Potential Make Duckweeds Adequate as Bioenergy Feedstocks. Bioenergy Research, 2021, 14, 1082-1092.	2.2	12
4	Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell, 2021, 33, 3207-3234.	3.1	111
5	Genome and time-of-day transcriptome of <i>Wolffia australiana</i> link morphological minimization with gene loss and less growth control. Genome Research, 2021, 31, 225-238.	2.4	56
6	Structural basis for Ca2+-dependent activation of a plant metacaspase. Nature Communications, 2020, 11, 2249.	5.8	38
7	Host-specific and tissue-dependent orchestration of microbiome community structure in traditional rice paddy ecosystems. Plant and Soil, 2020, 452, 379-395.	1.8	14
8	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
9	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE, 2020, 15, e0228560.	1.1	51
10	Flavonoids from duckweeds: potential applications in the human diet. RSC Advances, 2020, 10, 44981-44988.	1.7	21
11	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. , 2020, 15, e0228560.		0
12	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. , 2020, 15, e0228560.		0
13	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. , 2020, 15, e0228560.		0
14	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. , 2020, 15, e0228560.		0
15	Linkage structure of cell-wall polysaccharides from three duckweed species. Carbohydrate Polymers, 2019, 223, 115119.	5.1	23
16	Mixing genomes alters nuclear architecture. Nature Plants, 2018, 4, 65-66.	4.7	2
17	Sequence-guided approach to genotyping plant clones and species using polymorphic NB-ARC-related genes. Plant Molecular Biology, 2018, 98, 219-231.	2.0	8
18	Domain swap between two typeâ€ <scp>II</scp> metacaspases defines key elements for their biochemical properties. Plant Journal, 2018, 96, 921-936.	2.8	17

Eric Lam

#	Article	IF	CITATIONS
19	Roles of Plant-Associated Microbiota in Traditional Herbal Medicine. Trends in Plant Science, 2018, 23, 559-562.	4.3	91
20	Generating a high onfidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. Plant Journal, 2018, 96, 670-684.	2.8	64
21	Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes. Frontiers in Chemistry, 2018, 6, 265.	1.8	75
22	Correlation of Apiose Levels and Growth Rates in Duckweeds. Frontiers in Chemistry, 2018, 6, 291.	1.8	25
23	Comprehensive definition of genome features in <i>Spirodela polyrhiza</i> by highâ€depth physical mapping and shortâ€read <scp>DNA</scp> sequencing strategies. Plant Journal, 2017, 89, 617-635.	2.8	115

24 RNA interference as a gene silencing tool to control<i><i>Tuta absoluta</i><i>i>to to mato (Solanum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf S

25	Expression of <i>Arabidopsis Bax Inhibitorâ€l </i> in transgenic sugarcane confers drought tolerance. Plant Biotechnology Journal, 2016, 14, 1826-1837.	4.1	59
26	Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta, 2015, 241, 1395-1404.	1.6	61
27	Decoding the role of chromatin architecture in development: coming closer to the end of the tunnel. Frontiers in Plant Science, 2014, 5, 374.	1.7	3
28	Integrative analysis of chromatin states in <scp>A</scp> rabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant Journal, 2013, 73, 77-90.	2.8	147
29	Regulating the reapers: activating metacaspases for programmed cell death. Trends in Plant Science, 2012, 17, 487-494.	4.3	73
30	Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant Journal, 2011, 66, 969-982.	2.8	144
31	Calcium-dependent Activation and Autolysis of Arabidopsis Metacaspase 2d. Journal of Biological Chemistry, 2011, 286, 10027-10040.	1.6	84
32	Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana. Molecular Plant, 2009, 2, 661-674.	3.9	12
33	Characterization of a photosynthetic mutant of Lemna lacking the cytochrome b6-f complex. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 106-109.	0.5	25
34	NDP-Sugar Pathways Overview of Spirodela polyrhiza and Their Relevance for Bioenergy and Biorefinery. Bioenergy Research, 0, , 1.	2.2	1