Jan-E Bäckvall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658976/publications.pdf

Version: 2024-02-01

374 papers 24,078 citations

76 h-index 129 g-index

419 all docs

419 docs citations

419 times ranked 11626 citing authors

#	Article	IF	Citations
1	Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chemical Society Reviews, 2006, 35, 237.	18.7	997
2	Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer—A Biomimetic Approach. Angewandte Chemie - International Edition, 2008, 47, 3506-3523.	7.2	818
3	Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. Chemical Reviews, 2003, 103, 3247-3262.	23.0	557
4	Title is missing!. Chemical Society Reviews, 2001, 30, 321-331.	18.7	485
5	Ruthenium- and Enzyme-Catalyzed Dynamic Kinetic Resolution of Secondary Alcohols. Journal of the American Chemical Society, 1999, 121, 1645-1650.	6.6	355
6	Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 2015, 137, 3996-4009.	6.6	324
7	Enzymatic Resolution of Alcohols Coupled with Ruthenium-Catalyzed Racemization of the Substrate Alcohol. Angewandte Chemie International Edition in English, 1997, 36, 1211-1212.	4.4	314
8	Transition metal hydrides as active intermediates in hydrogen transfer reactions. Journal of Organometallic Chemistry, 2002, 652, 105-111.	0.8	311
9	Efficient Ruthenium-Catalyzed Aerobic Oxidation of Alcohols Using a Biomimetic Coupled Catalytic System. Journal of Organic Chemistry, 2002, 67, 1657-1662.	1.7	302
10	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chemical Reviews, 2021, 121, 4373-4505.	23.0	302
11	Combined Ruthenium(II) and Lipase Catalysis for Efficient Dynamic Kinetic Resolution of Secondary Alcohols. Insight into the Racemization Mechanism. Journal of the American Chemical Society, 2005, 127, 8817-8825.	6.6	288
12	Dynamic kinetic resolution catalyzed by enzymes and metals. Current Opinion in Chemical Biology, 2007, 11, 226-232.	2.8	277
13	Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines. Journal of the American Chemical Society, 2005, 127, 17620-17621.	6.6	270
14	Studies on the Mechanism of Metal-Catalyzed Hydrogen Transfer from Alcohols to Ketones. Chemistry - A European Journal, 2001, 7, 5052-5058.	1.7	266
15	Efficient Ruthenium-Catalyzed Aerobic Oxidation of Amines by Using a Biomimetic Coupled Catalytic System. Chemistry - A European Journal, 2005, 11, 2327-2334.	1.7	253
16	Ruthenium-Catalyzed Transfer Hydrogenation of Imines by Propan-2-ol in Benzene. Chemistry - A European Journal, 2002, 8, 2955.	1.7	201
17	Coâ€immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2013, 52, 14006-14010.	7.2	196
18	Highly Compatible Metal and Enzyme Catalysts for Efficient Dynamic Kinetic Resolution of Alcohols at Ambient Temperature. Angewandte Chemie - International Edition, 2004, 43, 6535-6539.	7.2	193

#	Article	IF	CITATIONS
19	Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	181
20	Ruthenium-catalysed aerobic oxidation of alcohols via multistep electron transfer. Journal of the Chemical Society Chemical Communications, 1991, , 473-475.	2.0	178
21	X-ray Structure of Candida antarctica Lipase A Shows a Novel Lid Structure and a Likely Mode of Interfacial Activation. Journal of Molecular Biology, 2008, 376, 109-119.	2.0	172
22	Evidence for a ruthenium dihydride species as the active catalyst in the RuCl2(PPh3)-catalyzed hydrogen transfer reaction in the presence of base. Chemical Communications, 1999, , 351-352.	2.2	163
23	Ruthenium(II)â€Catalyzed Oppenauerâ€Type Oxidation of Secondary Alcohols. Chemistry - A European Journal, 1996, 2, 1533-1536.	1.7	159
24	Control of Selectivity in Palladium(II)-Catalyzed Oxidative Transformations of Allenes. Accounts of Chemical Research, 2018, 51, 1520-1531.	7.6	156
25	Chemoenzymatic dynamic kinetic resolution. Trends in Biotechnology, 2004, 22, 130-135.	4.9	146
26	Dynamic Kinetic Resolution of α-Hydroxy Acid Esters. Organic Letters, 2000, 2, 1037-1040.	2.4	142
27	A Chemoenzymatic Approach to Enantiomerically Pure Amines Using Dynamic Kinetic Resolution: Application to the Synthesis of Norsertraline. Chemistry - A European Journal, 2009, 15, 3403-3410.	1.7	142
28	Enantioselective α-Hydroxylation of 2-Arylacetic Acid Derivatives and Buspirone Catalyzed by Engineered Cytochrome P450 BM-3. Journal of the American Chemical Society, 2006, 128, 6058-6059.	6.6	141
29	The Use of Sulfonyl 1,3-Dienes in Organic Synthesis. Chemical Reviews, 1998, 98, 2291-2312.	23.0	136
30	Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins by H2O2Using a Biomimetic Flavin-Based Coupled Catalytic System. Journal of the American Chemical Society, 2001, 123, 1365-1371.	6.6	133
31	An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines. Tetrahedron Letters, 2002, 43, 4699-4702.	0.7	131
32	Chiral arenethiolatocopper(I) catalyzed substitution reactions of acyclic allylic substrates with Grignard reagents. Tetrahedron Letters, 1995, 36, 3059-3062.	0.7	130
33	Dehydrogenation of aromatic amines to imines via ruthenium-catalyzed hydrogen transfer. Chemical Communications, 2002, , 1144-1145.	2.2	129
34	Carbonâ^'Carbon Bond Formation in Palladium(II)-Catalyzed Allylic Oxidation:  A Novel Oxidative Carbocyclization of Allene-Substituted Olefins. Journal of the American Chemical Society, 2003, 125, 6056-6057.	6.6	126
35	Ruthenium-catalyzed isomerization of allylic alcohols to saturated ketones. Tetrahedron Letters, 1993, 34, 5459-5462.	0.7	125
36	Palladium(II)-Catalyzed Cyclization Using Molecular Oxygen as Reoxidant. Tetrahedron Letters, 1995, 36, 7749-7752.	0.7	125

#	Article	IF	Citations
37	Mechanistic Study of Hydrogen Transfer to Imines from a Hydroxycyclopentadienyl Ruthenium Hydride. Experimental Support for a Mechanism Involving Coordination of Imine to Ruthenium Prior to Hydrogen Transfer. Journal of the American Chemical Society, 2006, 128, 14293-14305.	6.6	125
38	Mechanism of Ruthenium-Catalyzed Hydrogen Transfer Reactions. Concerted Transfer of OH and CH Hydrogens from an Alcohol to a (Cyclopentadienone)ruthenium Complex. Journal of Organic Chemistry, 2003, 68, 7681-7684.	1.7	124
39	Dynamic Kinetic Resolution of Secondary Diols via Coupled Ruthenium and Enzyme Catalysis. Journal of Organic Chemistry, 1999, 64, 5237-5240.	1.7	121
40	Combinatorial reshaping of the <i>Candida antarctica</i> lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 78-83.	3.3	120
41	Dynamic Kinetic Resolution of \hat{l}^2 -Azido Alcohols. An Efficient Route to Chiral Aziridines and \hat{l}^2 -Amino Alcohols. Journal of Organic Chemistry, 2001, 66, 4022-4025.	1.7	117
42	Palladium-promoted addition of amines to isolated double bonds. Journal of Organometallic Chemistry, 1974, 72, 127-138.	0.8	116
43	Multi-step catalysis for the oxidation of oleftns to ketones by molecular oxygen in chloride free media. Tetrahedron Letters, 1988, 29, 2885-2888.	0.7	113
44	Palladium(II) atalyzed Oxidative Carbocyclization of Azaâ€Enallenes. Angewandte Chemie - International Edition, 2010, 49, 4624-4627.	7.2	113
45	Intramolecular Palladium(II)-Catalyzed 1,2-Addition to Allenes. Journal of the American Chemical Society, 2000, 122, 9600-9609.	6.6	112
46	The <i>syn</i> / <i>anti</i> â€Dichotomy in the Palladiumâ€Catalyzed Addition of Nucleophiles to Alkenes. Chemistry - A European Journal, 2015, 21, 36-56.	1.7	112
47	Mild and Efficient Flavin-Catalyzed H2O2Oxidation of Tertiary Amines to AmineN-Oxides. Journal of Organic Chemistry, 1998, 63, 6650-6655.	1.7	111
48	(S)-Selective Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols. Chemistry - A European Journal, 2006, 12, 225-232.	1.7	110
49	PdII-Catalyzed Aerobic Allylic Oxidative Carbocyclization of Allene-Substituted Olefins: Immobilization of an Oxygen-Activating Catalyst. Angewandte Chemie - International Edition, 2006, 45, 6914-6917.	7.2	109
50	Aerobic oxidation of secondary alcohols via ruthenium-catalysed hydrogen transfer involving a new triple catalytic system. Journal of the Chemical Society Chemical Communications, 1994, , 1037-1038.	2.0	108
51	A New Coupled Catalytic System for Dihydroxylation of Olefins by H2O2. Journal of the American Chemical Society, 1999, 121, 10424-10425.	6.6	107
52	Directed Evolution of an Enantioselective Lipase with Broad Substrate Scope for Hydrolysis of α-Substituted Esters. Journal of the American Chemical Society, 2010, 132, 7038-7042.	6.6	106
53	An Efficient Route to Chiral \hat{I}^{\pm} - and \hat{I}^2 -Hydroxyalkanephosphonates. Journal of Organic Chemistry, 2003, 68, 4815-4818.	1.7	105
54	Enantioselective Synthesis of Î ² -Hydroxy Acid Derivatives via a One-Pot Aldol Reactionâ ^{^2} Dynamic Kinetic Resolution. Organic Letters, 2001, 3, 1209-1212.	2.4	103

#	Article	IF	CITATIONS
55	Highly Selective Sulfoxidation of Allylic and Vinylic Sulfides by Hydrogen Peroxide Using a Flavin as Catalyst. Journal of Organic Chemistry, 2003, 68, 5890-5896.	1.7	103
56	Palladiumâ€Catalyzed Oxidative Carbocyclizations. Chemistry - A European Journal, 2012, 18, 11498-11523.	1.7	103
57	Highly Efficient Redox Isomerization of Allylic Alcohols at Ambient Temperature Catalyzed by Novel Ruthenium-Cyclopentadienyl Complexes—New Insight into the Mechanism. Chemistry - A European Journal, 2005, 11, 5832-5842.	1.7	99
58	Water as Nucleophile in Palladium-Catalyzed Oxidative Carbohydroxylation of Allene-Substituted Conjugated Dienes. Journal of the American Chemical Society, 2007, 129, 14120-14121.	6.6	99
59	Palladiumâ€Catalyzed Oxidative Borylative Carbocyclization of Enallenes. Angewandte Chemie - International Edition, 2011, 50, 6155-6159.	7.2	96
60	Evidence for (Ï€-allyl)palladium(II)(quinone) complexes in the palladium-catalyzed 1,4-diacetoxylation of conjugated dienes. Tetrahedron Letters, 1988, 29, 2243-2246.	0.7	95
61	Enzymatische Racematspaltung von Alkoholen gekoppelt mit Rutheniumâ€katalysierter Racemisierung des Substratâ€Alkohols. Angewandte Chemie, 1997, 109, 1256-1258.	1.6	92
62	Ruthenium-catalysed transfer hydrogenation of imines by propan-2-ol. Journal of the Chemical Society Chemical Communications, 1992, , 980-982.	2.0	89
63	Zeolite-Encapsulated Cobalt Salophen Complexes as Efficient Oxygen-Activating Catalysts in Palladium-Catalyzed Aerobic 1,4-Oxidation of 1,3-Dienes. Chemistry - A European Journal, 1999, 5, 1460-1467.	1.7	89
64	Enzymatic Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of δ-Hydroxy Esters. An Efficient Route to Chiral δ-Lactones. Journal of Organic Chemistry, 2002, 67, 1261-1265.	1.7	88
65	Chemoenzymatic Dynamic Kinetic Resolution of Axially Chiral Allenes. Chemistry - A European Journal, 2010, 16, 4447-4451.	1.7	85
66	Palladium-catalyzed oxidative dehydrogenative carbonylation reactions using carbon monoxide and mechanistic overviews. Chemical Society Reviews, 2020, 49, 341-353.	18.7	85
67	Asymmetric Induction in the Arenethiolatocopper(I)-Catalyzed Substitution Reaction of Grignard Reagents with Allylic Substrates. Tetrahedron, 2000, 56, 2895-2903.	1.0	83
68	Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3). Experimental support for an ionic pathway. Chemical Communications, 2006, , 2771-2773.	2.2	83
69	Highly Selective Cascade C–C Bond Formation via Palladium- Catalyzed Oxidative Carbonylation–Carbocyclization–Carbonylation–Alkynylation of Enallenes. Journal of the American Chemical Society, 2015, 137, 11868-11871.	6.6	83
70	Ironâ€catalyzed Crossâ€Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes. Angewandte Chemie - International Edition, 2016, 55, 3734-3738.	7.2	82
71	<i>ortho</i> â€Chelating Arenethiolatocopper(<scp>I</scp>) Complexes as Versatile Catalysts in the Regioselective Crossâ€Coupling of Allylic Derivatives with <i>n</i> BuMglâ€"An Example of Reversed Reactivity of Leaving Groups. Chemistry - A European Journal, 1995, 1, 351-359.	1.7	81
72	Chemoenzymatic Dynamic Kinetic Resolution of \hat{l}^2 -Halo Alcohols. An Efficient Route to Chiral Epoxides. Journal of Organic Chemistry, 2002, 67, 9006-9010.	1.7	81

#	Article	IF	CITATIONS
73	New efficient ruthenium catalysts for racemization of alcohols at room temperature. Tetrahedron Letters, 2004, 45, 6799-6802.	0.7	81
74	Highly Dispersed Palladium Nanoparticles on Mesocellular Foam: An Efficient and Recyclable Heterogeneous Catalyst for Alcohol Oxidation. Chemistry - A European Journal, 2012, 18, 12202-12206.	1.7	80
75	Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent. Angewandte Chemie - International Edition, 2015, 54, 5122-5126.	7.2	80
76	Experimental Evidence Supporting a Culll Intermediate in Cross-Coupling Reactions of Allylic Esters with Diallylcuprate Species. Chemistry - A European Journal, 2001, 7, 1981-1989.	1.7	78
77	Highly Efficient Route for Enantioselective Preparation of Chlorohydrins via Dynamic Kinetic Resolution. Organic Letters, 2008, 10, 4807-4810.	2.4	78
78	A Chemoenzymatic Dynamic Kinetic Resolution Approach to Enantiomerically Pure ($\langle i\rangle R\langle i\rangle$)- and ($\langle i\rangle S\langle i\rangle$)-Duloxetine. Journal of Organic Chemistry, 2011, 76, 3917-3921.	1.7	77
79	Ruthenium-catalysed oxidation of alcohols by acetone. Journal of the Chemical Society Chemical Communications, 1992, , 337-339.	2.0	76
80	Central versus Terminal Attack in Nucleophilic Addition to (Ï€-Allyl)palladium Complexes. Ligand Effects and Mechanism. Organometallics, 1997, 16, 1058-1064.	1.1	76
81	Mechanism of Palladium-Catalyzed Allylic Acetoxylation of Cyclohexene. Chemistry - A European Journal, 1998, 4, 1083-1089.	1.7	76
82	Efficient and Selective Sulfoxidation by Hydrogen Peroxide, Using a Recyclable Flavinâ°'[BMIm]PF6 Catalytic System. Journal of Organic Chemistry, 2006, 71, 3849-3853.	1.7	75
83	Small Pd Nanoparticles Supported in Large Pores of Mesocellular Foam: An Excellent Catalyst for Racemization of Amines. Chemistry - A European Journal, 2011, 17, 13269-13273.	1.7	75
84	Synthesis of protected allylamines via palladium-catalyzed amide addition to allylic substrates. Tetrahedron Letters, 1985, 26, 1749-1752.	0.7	74
85	Mild and Efficient Flavin-Catalyzed H2O2 Oxidations. Chemistry - A European Journal, 2001, 7, 297-302.	1.7	74
86	Synthesis of Conjugated Dienes via a Biomimetic Aerobic Oxidative Coupling of Two C _{vinyl} H Bonds. Chemistry - A European Journal, 2013, 19, 10799-10803.	1.7	74
87	New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes. Chemistry - A European Journal, 2016, 22, 5046-5054.	1.7	74
88	Ruthenium-Catalyzed Oppenauer-Type Oxidation of 3β-Hydroxy Steroids. A Highly Efficient Entry into the Steroidal Hormones with 4-En-3-one Functionality. Journal of Organic Chemistry, 1996, 61, 6587-6590.	1.7	73
89	Control of Selectivity in Palladiumâ€Catalyzed Oxidative Carbocyclization/Borylation of Allenynes. Angewandte Chemie - International Edition, 2013, 52, 6283-6287.	7.2	73
90	Olefinâ€Directed Palladiumâ€Catalyzed Regio―and Stereoselective Oxidative Arylation of Allenes. Angewandte Chemie - International Edition, 2015, 54, 9066-9069.	7.2	72

#	Article	IF	CITATIONS
91	Palladium(II)/Brønsted Acidâ€Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes. Angewandte Chemie - International Edition, 2015, 54, 6024-6027.	7.2	72
92	Asymmetric Catalysis Special Feature Part II: One-pot synthesis of enantiopure syn-1,3-diacetates from racemic syn/anti mixtures of 1,3-diols by dynamic kinetic asymmetric transformation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5761-5766.	3 . 3	71
93	Enantioselective Synthesis of <i>syn</i> and <i>anti</i> >-1,3-Aminoalcohols via β-Aminoketones and Subsequent Reduction/Dynamic Kinetic Asymmetric Transformation. Journal of the American Chemical Society, 2010, 132, 15182-15184.	6.6	70
94	Palladium–hydroquinone catalysed electrochemical 1,4-oxidation of conjugated dienes. Journal of the Chemical Society Chemical Communications, 1987, .	2.0	69
95	Mechanistic studies on ruthenium-catalyzed hydrogen transfer reactions. Chemical Communications, 2000, , 611-612.	2.2	69
96	Shvo's Catalyst in Hydrogen Transfer Reactions. Topics in Organometallic Chemistry, 2011, , 85-125.	0.7	69
97	Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. Advanced Synthesis and Catalysis, 2015, 357, 1567-1586.	2.1	67
98	Carbonâ^'Carbon Bond Formation in Regio- and Stereoselective Palladium-Catalyzed Cyclization of Allene-Substituted Conjugated Dienes. Journal of Organic Chemistry, 2001, 66, 8015-8025.	1.7	66
99	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of \hat{I}^2 -Hydroxy Nitriles. A Route to Useful Precursors for \hat{I}^3 -Amino Alcohols. Advanced Synthesis and Catalysis, 2001, 343, 726-731.	2.1	66
100	Enzymatic Resolution, Desymmetrization, and Dynamic Kinetic Asymmetric Transformation of 1,3-Cycloalkanediols. Journal of Organic Chemistry, 2006, 71, 6309-6316.	1.7	66
101	Practical chemoenzymatic dynamic kinetic resolution of primary amines via transfer of a readily removable benzyloxycarbonyl group. Tetrahedron Letters, 2008, 49, 977-979.	0.7	66
102	Palladiumâ€Catalyzed Oxidative Carbocyclization–Borylation of Enallenes to Cyclobutenes. Angewandte Chemie - International Edition, 2016, 55, 6520-6524.	7.2	66
103	Chiral Benzoquinones as a New Class of Ligands for Asymmetric Catalysis:Â Synthesis and Application to the Palladium(II)-Catalyzed 1,4-Dialkoxylation of 1,3-Dienes. Journal of Organic Chemistry, 1998, 63, 6466-6471.	1.7	65
104	Chemoenzymatic Dynamic Kinetic Resolution of Allylic Alcohols:  A Highly Enantioselective Route to Acyloin Acetates. Organic Letters, 2007, 9, 3401-3404.	2.4	64
105	Highly Enantioselective Resolution of βâ€Amino Esters by <i>Candida antarctica</i> Lipaseâ€A Immobilized in Mesocellular Foam: Application to Dynamic Kinetic Resolution ChemCatChem, 2010, 2, 534-538.	1.8	64
106	Enantioselective Enzymatic Desymmetrization of Prochiral Allenic Diols. Angewandte Chemie - International Edition, 2011, 50, 9731-9734.	7.2	64
107	Palladium atalyzed Oxidative Arylating Carbocyclization of Allenynes. Angewandte Chemie - International Edition, 2012, 51, 2703-2707.	7.2	64
108	Palladiumâ€Catalyzed Aerobic Domino Oxidative Carbocyclizationâ€Alkynylation of Allenynes. Angewandte Chemie - International Edition, 2013, 52, 14209-14213.	7.2	64

#	Article	IF	CITATIONS
109	Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction. ACS Catalysis, 2017, 7, 1601-1605.	5.5	64
110	Chemodivergent and Diastereoselective Synthesis of \hat{l}^3 -Lactones and \hat{l}^3 -Lactams: A Heterogeneous Palladium-Catalyzed Oxidative Tandem Process. Journal of the American Chemical Society, 2018, 140, 14604-14608.	6.6	64
111	In Situ Generation of Nitroso Compounds from Catalytic Hydrogen Peroxide Oxidation of Primary Aromatic Amines and Their Oneâ€Pot Use in Heteroâ€Diels–Alder Reactions. European Journal of Organic Chemistry, 2007, 2007, 4431-4436.	1.2	63
112	Câ€2 Selective Arylation of Indoles with Heterogeneous Nanopalladium and Diaryliodonium Salts. Chemistry - A European Journal, 2014, 20, 13531-13535.	1.7	63
113	Mechanistic Aspects on Cyclopentadienylruthenium Complexes in Catalytic Racemization of Alcohols. Accounts of Chemical Research, 2013, 46, 2545-2555.	7.6	62
114	Dynamic kinetic resolution of \hat{l}^3 -hydroxy acid derivatives. Tetrahedron Letters, 2002, 43, 2983-2986.	0.7	61
115	Aerobic Oxidative Coupling of Arenes and Olefins through a Biomimetic Approach. Chemistry - A European Journal, 2013, 19, 4140-4145.	1.7	61
116	Aerobic Lactonization of Diols by Biomimetic Oxidation. Chemistry - A European Journal, 2011, 17, 12596-12601.	1.7	60
117	The steric course of the palladium promoted amination of simple olefins. Tetrahedron Letters, 1974, 15, 1363-1366.	0.7	59
118	On the Mechanism of Palladium(0)â€Catalyzed Reactions of Allylic Substrates with Nucleophiles. Origin of the Loss of Stereospecificity. Israel Journal of Chemistry, 1991, 31, 17-24.	1.0	59
119	Cobalt Tetra(hydroquinone)porphyrin: An Efficient Electron Transfer Reagent in Aerobic Pd-Catalyzed 1,4-Diacetoxylation of 1,3-Cyclohexadiene. Angewandte Chemie International Edition in English, 1993, 32, 263-264.	4.4	59
120	MTO and OsO4: An Efficient Catalytic Couple for Mild H2O2-Based Asymmetric Dihydroxylation of Olefins. Chemistry - A European Journal, 2003, 9, 2783-2788.	1.7	59
121	Biomimetic Oxidative Coupling of Benzylamines and 2â€Aminophenols: Synthesis of Benzoxazoles. Chemistry - A European Journal, 2012, 18, 13609-13613.	1.7	58
122	Aerobic Oxidations of Conjugated Dienes Using a Catalytic Palladium(II)â^'Quinoneâ^'Heteropolyacid System for Electron Transfer from Organic Substrates to Molecular Oxygen. Organometallics, 1998, 17, 45-50.	1.1	57
123	Combined metal catalysis and biocatalysis for an efficient deracemization process. Current Opinion in Biotechnology, 2003, 14, 407-413.	3.3	57
124	Highly Compatible Metal and Enzyme Catalysts for Efficient Dynamic Kinetic Resolution of Alcohols at Ambient Temperature. Angewandte Chemie, 2004, 116, 6697-6701.	1.6	57
125	Mechanism of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride. Support for a stepwise mechanism. Chemical Communications, 2004, , 2748-2749.	2.2	57
126	Ruthenium- and Enzyme-Catalyzed Dynamic Kinetic Asymmetric Transformation of 1,4-Diols: Synthesis ofγ-Hydroxy Ketones. Journal of Organic Chemistry, 2004, 69, 9191-9195.	1.7	57

#	Article	IF	CITATIONS
127	Racemization of Secondary Alcohols Catalyzed by Cyclopentadienylruthenium Complexes: Evidence for an Alkoxide Pathway by Fast β-Hydride Elimination–Readdition. Chemistry - A European Journal, 2007, 13, 6063-6072.	1.7	57
128	Highly Efficient Synthesis of Enantiopure DiacetylatedC2-Symmetric Diols by Ruthenium- and Enzyme-Catalyzed Dynamic Kinetic Asymmetric Transformation (DYKAT). Chemistry - A European Journal, 2006, 12, 6053-6061.	1.7	56
129	Gold-Catalyzed Cyclization of Allene-Substituted Malonate Esters:  Synthesis of β,γ-Unsaturated δ-Lactones. Organic Letters, 2007, 9, 2235-2237.	2.4	56
130	Enantiopure 1,5-Diols from Dynamic Kinetic Asymmetric Transformation. Useful Synthetic Intermediates for the Preparation of Chiral Heterocycles. Organic Letters, 2008, 10, 2027-2030.	2.4	56
131	Enzymatic kinetic resolution of primary allenic alcohols. Application to the total synthesis and stereochemical assignment of striatisporolide A. Organic and Biomolecular Chemistry, 2009, 7, 3379.	1.5	56
132	Enantioselective addition of aldehydes to amines via combined catalytic biomimetic oxidation and organocatalytic C–C bond formation. Tetrahedron Letters, 2005, 46, 3965-3968.	0.7	55
133	DFT Study of an Inner-Sphere Mechanism in the Hydrogen Transfer from a Hydroxycyclopentadienyl Ruthenium Hydride to Imines. Organometallics, 2007, 26, 2840-2848.	1.1	55
134	Mild and Selective Hydrogenation of Nitro Compounds using Palladium Nanoparticles Supported on Aminoâ€Functionalized Mesocellular Foam. ChemCatChem, 2014, 6, 3153-3159.	1.8	55
135	Preparation and Redox Properties of N, N, N-1, 3, 5-Trial kylated Flavin Derivatives and Their Activity as Redox Catalysts. Chemistry - A European Journal, 2005, 11, 112-119.	1.7	54
136	Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases. Journal of Organic Chemistry, 2014, 79, 3747-3751.	1.7	54
137	An Enantioselective Route to α-Methyl Carboxylic Acids via Metal and Enzyme Catalysis. Organic Letters, 2007, 9, 5095-5098.	2.4	53
138	Highly Selective Construction of Sevenâ€Membered Carbocycles by Olefinâ€Assisted Palladiumâ€Catalyzed Oxidative Carbocyclization–Alkoxycarbonylation of Bisallenes. Angewandte Chemie - International Edition, 2016, 55, 14405-14408.	7.2	53
139	Carbon-carbon bond formation in palladium(II)-catalyzed intramolecular 1,4-oxidation of conjugated dienes. Tetrahedron Letters, 1994, 35, 5713-5716.	0.7	51
140	Stereoselective Palladium-Catalyzed Carbocyclization of Allenic Allylic Carboxylates. Journal of the American Chemical Society, 2003, 125, 14140-14148.	6.6	51
141	Palladium atalyzed Oxidative Acyloxylation/Carbocyclization of Allenynes. Angewandte Chemie - International Edition, 2013, 52, 3217-3221.	7.2	51
142	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of \hat{l}^2 -Hydroxy Nitriles. Correction of Absolute Configuration and Transformation to Chiral \hat{l}^2 -Hydroxy Acids and \hat{l}^3 -Amino Alcohols. Advanced Synthesis and Catalysis, 2002, 344, 947-952.	2.1	50
143	Synthesis of New Hybrid Hydroquinone/Cobalt Schiff Base Catalysts: Efficient Electronâ€Transfer Mediators in Aerobic Oxidation. Chemistry - A European Journal, 2008, 14, 7500-7503.	1.7	50
144	A Versatile Route to 2-Substituted Cyclic 1,3-Dienes via a Copper(I)-Catalyzed Cross-Coupling Reaction of Dienyl Triflates with Grignard Reagents. Journal of Organic Chemistry, 1998, 63, 2517-2522.	1.7	49

#	Article	IF	Citations
145	Mechanism of ruthenium-catalyzed hydrogen transfer reactions. Evidence for a stepwise transfer of CH and NH hydrogens from an amine to a (cyclopentadienone)ruthenium complex. Chemical Communications, 2003, , 1652-1653.	2.2	49
146	Palladium-Catalyzed Oxidative Carbocyclization/Arylation of Enallenes. Organic Letters, 2011, 13, 5838-5841.	2.4	49
147	Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization–Carbonylation–Alkynylation. Journal of the American Chemical Society, 2016, 138, 13846-13849.	6.6	49
148	Enantioselective Synthesis of α-Methyl Carboxylic Acids from Readily Available Starting Materials via Chemoenzymatic Dynamic Kinetic Resolution. Journal of Organic Chemistry, 2010, 75, 6842-6847.	1.7	48
149	Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates. Organic Letters, 2014, 16, 1434-1437.	2.4	48
150	Asymmetric Synthesis of Bicyclic Diol Derivatives through Metal and Enzyme Catalysis: Application to the Formal Synthesis of Sertraline. Chemistry - A European Journal, 2010, 16, 4031-4036.	1.7	47
151	Access to Cinnamyl Derivatives from Arenes and Allyl Esters by a Biomimetic Aerobic Oxidative Dehydrogenative Coupling. Organic Letters, 2014, 16, 1664-1667.	2.4	47
152	Evidence for a (Ï€-allyl)palladium intermediate in the quinone-based palladium-catalysed allylic acetoxylation. Journal of the Chemical Society Chemical Communications, 1994, , 265-266.	2.0	46
153	Dynamic Kinetic Resolution of Primary Alcohols with an Unfunctionalized Stereogenic Center in the βâ€Position. Advanced Synthesis and Catalysis, 2007, 349, 1577-1581.	2.1	46
154	Enzyme―and Rutheniumâ€Catalyzed Enantioselective Transformation of αâ€Allenic Alcohols into 2,3â€Dihydrofurans. Angewandte Chemie - International Edition, 2016, 55, 5568-5572.	7.2	46
155	Mild and efficient palladium(ii)-catalyzed racemization of allenes. Chemical Communications, 2004, , 964-965.	2.2	45
156	Osmium-catalyzed dihydroxylation of alkenes by H2O2 in room temperature ionic liquid co-catalyzed by VO(acac)2 or MeReO3. Journal of Organometallic Chemistry, 2005, 690, 3614-3619.	0.8	45
157	Efficient Reoxidation of Palladium by a Hybrid Catalyst in Aerobic Palladiumâ€Catalyzed Carbocyclization of Enallenes. Chemistry - A European Journal, 2009, 15, 6799-6801.	1.7	45
158	Palladium-Catalyzed Oxidative Domino Carbocyclization–Carbonylation–Alkynylation of Enallenes. Organic Letters, 2014, 16, 4174-4177.	2.4	45
159	Olefinâ€Directed Palladiumâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Chemistry - A European Journal, 2016, 22, 2939-2943.	1.7	45
160	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie - International Edition, 2021, 60, 15686-15704.	7.2	45
161	Palladium(II)-catalyzed intramolecular 1,2-oxidation of allenes involving nitrogen nucleophiles. Tetrahedron Letters, 2000, 41, 1619-1622.	0.7	44
162	Enzyme- and Ruthenium-Catalyzed Dynamic Kinetic Asymmetric Transformation of 1,5-Diols. Application to the Synthesis of (+)-Solenopsin A. Journal of Organic Chemistry, 2009, 74, 1988-1993.	1.7	44

#	Article	IF	Citations
163	Dynamic Kinetic Resolution of βâ€Amino Esters by a Heterogeneous System of a Palladium Nanocatalyst and <i>Candida antarctica</i> Lipase A. European Journal of Organic Chemistry, 2011, 2011, 1827-1830.	1.2	44
164	Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols Using an Air―and Moistureâ€5table Iron Racemization Catalyst. Chemistry - A European Journal, 2017, 23, 1048-1051.	1.7	44
165	The use of ortho-chelating arenethiolate non-transferable groups in the copper(I) catalyzed selective \hat{I}^{\pm} or \hat{I}^{3} substitution of acyclic allylic substrates with grignard reagents. Tetrahedron Letters, 1994, 35, 5931-5934.	0.7	43
166	Palladium(II)-catalyzed asymmetric 1,4-oxidation of 2-phenyl-1,3-cyclohexadiene. Tetrahedron Letters, 1997, 38, 8541-8544.	0.7	43
167	Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins by H2O2; Dual Role of the Cinchona Alkaloid Ligand. Organic Letters, 2001, 3, 3463-3466.	2.4	43
168	Regioselective 1,4-Silylcupration of 1,3-Dienes \hat{a} Characterization and Electrophilic Trapping of the Intermediate ($\hat{l}f$ -Allyl)copper Complex. European Journal of Organic Chemistry, 2002, 2002, 3527-3535.	1.2	43
169	Palladium-Catalyzed Oxidative Diarylating Carbocyclization of Enynes. Organic Letters, 2012, 14, 3538-3541.	2.4	43
170	Aerobic Direct C–H Arylation of Nonbiased Olefins. Organic Letters, 2014, 16, 4432-4435.	2.4	43
171	Enantioselective Palladiumâ€Catalyzed Carbonylative Carbocyclization of Enallenes via Crossâ€Dehydrogenative Coupling with Terminal Alkynes: Efficient Construction of αâ€Chirality of Ketones. Angewandte Chemie - International Edition, 2017, 56, 4535-4539.	7.2	43
172	Stereochemistry of the hydroxypalladation step in the wacker process. Journal of the Chemical Society Chemical Communications, 1977, , 264-265.	2.0	42
173	Palldium-catalyzed 1,2-oxidation of allenes. Tetrahedron Letters, 1997, 38, 291-294.	0.7	42
174	Allenes as Carbon Nucleophiles in Palladium-Catalyzed Reactions:  Observation of Anti Attack of Allenes on (π-Allyl)palladium Complexes. Journal of the American Chemical Society, 2002, 124, 11246-11247.	6.6	42
175	Efficient Formation of 2,3-Dihydrofurans via Iron-Catalyzed Cycloisomerization of \hat{l}_{\pm} -Allenols. ACS Catalysis, 2018, 8, 12-16.	5.5	42
176	Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized \hat{I}^3 -Hydroxy Amides. Journal of Organic Chemistry, 2005, 70, 2582-2587.	1.7	41
177	Efficient Ruthenium-Catalyzed Transfer Hydrogenation/Hydrogenation of 1,3-Cycloalkanediones to 1,3-Cycloalkanediols Using Microwave Heating. Journal of Organic Chemistry, 2006, 71, 8622-8625.	1.7	41
178	Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene. Chemical Communications, 2007, , 1913-1915.	2.2	41
179	Copper-Catalyzed <i>N</i> -Allenylation of Allylic Sulfonamides. Organic Letters, 2009, 11, 3814-3817.	2.4	41
180	Highly selective olefin-assisted palladium-catalyzed oxidative carbocyclization via remote olefin insertion. Chemical Science, 2017, 8, 616-620.	3.7	41

#	Article	IF	CITATIONS
181	Ruthenium-Catalyzed Aerobic Oxidation of Alcohols on Zeolite-Encapsulated Cobalt Salophen Catalyst. Topics in Catalysis, 2002, 19, 119-124.	1.3	40
182	Modern Oxidation of Alcohols Using Environmentally Benign Oxidants. , 2005, , 83-118.		40
183	Ruthenium- and lipase-catalyzed DYKAT of 1,2-diols: an enantioselective synthesis of syn-1,2-diacetates. Tetrahedron: Asymmetry, 2006, 17, 708-715.	1.8	40
184	Development of dynamic kinetic resolution on large scale for $(\hat{A}\pm)$ -1-phenylethylamine. Beilstein Journal of Organic Chemistry, 2010, 6, 823-829.	1.3	40
185	Biomimetic Aerobic Oxidation of Amino Alcohols to Lactams. Chemistry - A European Journal, 2012, 18, 11524-11527.	1.7	40
186	Nanopalladium on Aminoâ€Functionalized Mesocellular Foam: An Efficient Catalyst for Suzuki Reactions and Transfer Hydrogenations. ChemCatChem, 2013, 5, 612-618.	1.8	40
187	Combinatorial Library Based Engineering of <i>Candida antarctica</i> Lipaseâ€A for Enantioselective Transacylation of <i>sec</i> â€Alcohols in Organic Solvent. Angewandte Chemie - International Edition, 2015, 54, 4284-4288.	7.2	40
188	Palladiumâ€Catalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie - International Edition, 2017, 56, 3221-3225.	7.2	40
189	Stereochemistry of the oxidative cleavage of palladium-carbon bonds by cupric chloride. Tetrahedron Letters, 1977, 18, 467-468.	0.7	39
190	Mutated variant of Candida antarcticalipase B in (S)-selective dynamic kinetic resolution of secondary alcohols. Organic and Biomolecular Chemistry, 2011, 9, 81-82.	1.5	39
191	Palladium(II)-Catalyzed Tandem Oxidative Acetoxylation/ <i>ortho</i> C–H Activation/Carbocyclization of Arylallenes. Journal of the American Chemical Society, 2015, 137, 9559-9562.	6.6	39
192	Highly Selective Palladium-Catalyzed Hydroborylative Carbocyclization of Bisallenes to Seven-Membered Rings. Journal of the American Chemical Society, 2018, 140, 14324-14333.	6.6	38
193	Ironâ€Catalyzed Crossâ€Coupling of Propargyl Ethers with Grignard Reagents for the Synthesis of Functionalized Allenes and Allenols. Angewandte Chemie - International Edition, 2021, 60, 22178-22183.	7.2	38
194	Improved Palladium-Catalyzed 1,4-Haloacyloxylation and 1,4-Diacyloxylation of Cyclic Conjugated Dienes Acta Chemica Scandinavica, 1990, 44, 492-499.	0.7	38
195	The use of stabilized carbon nucleophiles in palladium(II)-catalyzed 1,4-oxidation of conjugated dienes. Tetrahedron Letters, 1997, 38, 3603-3606.	0.7	37
196	A Synthesis of Substituted α-Allenols via Iron-Catalyzed Cross-Coupling of Propargyl Carboxylates with Grignard Reagents. ACS Catalysis, 2016, 6, 7448-7451.	5.5	37
197	Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,βâ€Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles. Chemistry - A European Journal, 2016, 22, 7184-7189.	1.7	37
198	Electronic and structural studies of immobilized thiol-derivatized cobalt porphyrins on gold surfaces. Applied Surface Science, 2007, 253, 7540-7548.	3.1	36

#	Article	IF	Citations
199	Racemization of Alcohols Catalyzed by [RuCl(CO) ₂ 6. ⁵ â€pentaphenylcyclopentadienyl)]—Mechanistic Insights from Theoretical Modeling. Chemistry - A European Journal, 2009, 15, 5220-5229.	1.7	36
200	Enantioselective Route to Ketones and Lactones from Exocyclic Allylic Alcohols via Metal and Enzyme Catalysis. Organic Letters, 2012, 14, 5094-5097.	2.4	36
201	Efficient Palladiumâ€Catalyzed Aminocarbonylation of Aryl Iodides Using Palladium Nanoparticles Dispersed on Siliceous Mesocellular Foam. Chemistry - A European Journal, 2014, 20, 5885-5889.	1.7	36
202	Palladium-Catalyzed Oxidative Carbocyclization-Carbonylation of Allenynes and Enallenes. Chemistry - A European Journal, 2014, 20, 7608-7612.	1.7	36
203	Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions. Accounts of Chemical Research, 2021, 54, 2275-2286.	7.6	36
204	Efficient Synthesis of Symmetrical 2,5-Disubstituted Benzoquinones via Palladium-Catalyzed Double Negishi Coupling. Journal of Organic Chemistry, 1998, 63, 3764-3768.	1.7	35
205	lonic liquid-immobilized catalytic system for biomimetic dihydroxylation of olefins. Chemical Communications, 2004, , 1494-1495.	2.2	35
206	Dynamic Kinetic Resolution of Homoallylic Alcohols: Application to the Synthesis of Enantiomerically Pure 5,6â€Dihydropyranâ€2â€ones and Î'â€Lactones. Chemistry - A European Journal, 2013, 19, 13859-13864.	1.7	35
207	Palladium atalyzed Oxidative Arylating Carbocyclization of Allenynes: Control of Selectivity and Role of H ₂ O. Angewandte Chemie - International Edition, 2014, 53, 8696-8699.	7.2	35
208	Nanopalladium on Aminoâ€Functionalized Mesocellular Foam as an Efficient and Recyclable Catalyst for the Selective Transfer Hydrogenation of Nitroarenes to Anilines. ChemCatChem, 2014, 6, 205-211.	1.8	35
209	Chemoenzymatic Dynamic Kinetic Resolution of Primary Benzylic Amines using Pd ⁰ alB CLEA as a Biohybrid Catalyst. Chemistry - A European Journal, 2019, 25, 9174-9179.	1.7	35
210	On the Use of Iron in Organic Chemistry. Molecules, 2020, 25, 1349.	1.7	35
211	Iron(II)â€Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angewandte Chemie - International Edition, 2020, 59, 5403-5406.	7.2	35
212	A dual regiocontrol in the copper-catalysed Grignard reaction with primary allylic acetates. Journal of the Chemical Society Chemical Communications, 1987, , 827-829.	2.0	34
213	Palladium-catalyzed intramolecular 1,2-oxidation of allenes. Tetrahedron Letters, 1998, 39, 3601-3604.	0.7	34
214	Palladium-Catalyzed Carbocyclization of Alleneâ^'Diene Derivatives. Exploring Different Nucleophiles. Journal of Organic Chemistry, 2003, 68, 7243-7248.	1.7	34
215	Allylsilanes as Carbon Nucleophiles in the Palladium atalyzed 1,4â€Oxidation of Conjugated Dienes. Chemistry - A European Journal, 1997, 3, 482-490.	1.7	34
216	Efficient Aerobic Ruthenium atalyzed Oxidation of Secondary Alcohols by the Use of a Hybrid Electron Transfer Catalyst. European Journal of Organic Chemistry, 2010, 2010, 1971-1976.	1.2	34

#	Article	IF	CITATIONS
217	Selective Cascade Reaction of Bisallenes via Palladiumâ€Catalyzed Aerobic Oxidative Carbocyclization–Borylation and Aldehyde Trapping. Angewandte Chemie - International Edition, 2017, 56, 1590-1594.	7.2	34
218	The Effect of Solvent and Copper(I) Precursor on the Regioselectivity in the Cross-Coupling Reaction of Primary Allylic Acetates with Preformed Mono- and Dibutylcuprates Acta Chemica Scandinavica, 1995, 49, 899-906.	0.7	34
219	Aerobic Double Dehydrogenative Cross Coupling between Cyclic Saturated Ketones and Simple Arenes. Chemistry - A European Journal, 2014, 20, 5890-5894.	1.7	33
220	Cycloisomerization of Acetylenic Acids to \hat{I}^3 -Alkylidene Lactones using a Palladium(II) Catalyst Supported on Amino-Functionalized Siliceous Mesocellular Foam. Journal of Organic Chemistry, 2014, 79, 1399-1405.	1.7	33
221	Synthesis of Benzofurans and Indoles from Terminal Alkynes and Iodoaromatics Catalyzed by Recyclable Palladium Nanoparticles Immobilized on Siliceous Mesocellular Foam. Chemistry - A European Journal, 2017, 23, 12886-12891.	1.7	33
222	Allenes as Carbon Nucleophiles in Intramolecular Attack on ($\tilde{l} \in -1,3$ -Diene)palladium Complexes: Evidence for trans Carbopalladation of the 1,3-Diene. Chemistry - A European Journal, 2003, 9, 3445-3449.	1.7	32
223	On the Mechanism of the Unexpected Facile Formation of meso-Diacetate Products in Enzymatic Acetylation of Alkanediols. Journal of Organic Chemistry, 2003, 68, 2216-2222.	1.7	32
224	Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (<i>rac</i>)-1-phenylethanol. Beilstein Journal of Organic Chemistry, 2007, 3, 50.	1.3	32
225	Dynamic Processes in the Copper-Catalyzed Substitution of Chiral Allylic Acetates Leading to Loss of Chiral Information. Chemistry - A European Journal, 2007, 13, 4094-4102.	1.7	32
226	Synthesis of a Neonicotinoide Pesticide Derivative via Chemoenzymatic Dynamic Kinetic Resolution. Journal of Organic Chemistry, 2009, 74, 7407-7410.	1.7	32
227	Enantioselective Synthesis of (<i>R</i>)-Bufuralol via Dynamic Kinetic Resolution in the Key Step. Journal of Organic Chemistry, 2010, 75, 4596-4599.	1.7	32
228	Efficient ruthenium catalyzed transfer hydrogenation of functionalized imines by isopropanol under controlled microwave heating. Canadian Journal of Chemistry, 2005, 83, 909-916.	0.6	31
229	Mechanism of the Palladiumâ€Catalyzed Carbohydroxylation of Alleneâ€Substituted Conjugated Dienes: Rationalization of the Recently Observed Nucleophilic Attack by Water on a (Ï€â€Allyl)palladium Intermediate. Chemistry - A European Journal, 2008, 14, 9175-9180.	1.7	31
230	Enantioselektive enzymatische Desymmetrisierung prochiraler Allendiole. Angewandte Chemie, 2011, 123, 9905-9908.	1.6	31
231	A General Suzuki Cross-Coupling Reaction of Heteroaromatics Catalyzed by Nanopalladium on Amino-Functionalized Siliceous Mesocellular Foam. Journal of Organic Chemistry, 2014, 79, 3946-3954.	1.7	31
232	Palladium-Catalyzed Stereospecific Oxidative Cascade Reaction of Allenes for the Construction of Pyrrole Rings: Control of Reactivity and Selectivity. ACS Catalysis, 2019, 9, 5184-5190.	5 . 5	31
233	Application of Pd Nanoparticles Supported on Mesoporous Hollow Silica Nanospheres for the Efficient and Selective Semihydrogenation of Alkynes. ChemCatChem, 2016, 8, 773-778.	1.8	30
234	Vanadyl acetylacetonate as peroxide activator in osmium-catalyzed dihydroxylation of olefins by hydrogen peroxide. Tetrahedron Letters, 2001, 42, 2569-2571.	0.7	29

#	Article	IF	CITATIONS
235	Efficient Osmium/Rhenium-Catalyzed Dihydroxylation of Olefins with Hydrogen Peroxide under Acidic Conditions. Advanced Synthesis and Catalysis, 2003, 345, 1012-1016.	2.1	29
236	Palladium(0)-Catalyzed Cycloisomerization of Enallenes. Chemistry - A European Journal, 2005, 11, 6937-6943.	1.7	29
237	Preparation of Tetrasubstituted Olefins Using Mono or Double Aerobic Direct C–H Functionalization Strategies: Importance of Steric Effects. Journal of Organic Chemistry, 2015, 80, 2796-2803.	1.7	29
238	Selective Palladium atalyzed Allenic Câ^'H Bond Oxidation for the Synthesis of [3]Dendralenes. Angewandte Chemie - International Edition, 2017, 56, 13112-13116.	7.2	29
239	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie - International Edition, 2018, 57, 16842-16846.	7.2	29
240	Palladium(II)-catalyzed carbocyclization: Vinylpalladium in 1,4-oxidation of conjugated dienes. Tetrahedron, 1996, 52, 7511-7523.	1.0	28
241	Asymmetric Allyl-Metal Bonding in Substituted (η3-Allyl)palladium Complexes: X-ray Structures ofcis-andtrans-4-Acetoxy-[η3-(1,2,3)-cyclohexenyl]palladium Chloride Dimers. Chemistry - A European Journal, 2000, 6, 432-436.	1.7	28
242	Allylic Phosphates and Allylic Phosphinates as Electrophiles in Efficient Silylcupration Reactions of Acetylenes. Journal of Organic Chemistry, 2002, 67, 2136-2143.	1.7	28
243	Palladium(II)-Catalyzed Intramolecular 1,4-Oxyacyloxylation of Conjugated Dienes. A Stereocontrolled Route to Fused Six-Membered Lactones and Pyrans. Journal of Organic Chemistry, 2004, 69, 3102-3111.	1.7	28
244	An Unexpectedly Mild Thermal Alderâ-'Ene-Type Cyclization of Enallenes. Journal of Organic Chemistry, 2006, 71, 2914-2917.	1.7	28
245	CO Dissociation Mechanism in Racemization of Alcohols by a Cyclopentadienyl Ruthenium Dicarbonyl Catalyst. Journal of the American Chemical Society, 2011, 133, 2820-2823.	6.6	28
246	Palladium(II)â€Catalyzed Oxidative Cyclization of Allylic Tosylcarbamates: Scope, Derivatization, and Mechanistic Aspects. Chemistry - A European Journal, 2012, 18, 15151-15157.	1.7	28
247	Rate enhancement of oxidation reactions by the encapsulation of metal phthalocyanine complexes. Catalysis Letters, 2000, 65, 135-139.	1.4	27
248	CO Assistance in Ligand Exchange of a Ruthenium Racemization Catalyst: Identification of an Acyl Intermediate. Journal of the American Chemical Society, 2009, 131, 9500-9501.	6.6	27
249	An Efficient Dynamic Kinetic Resolution of Nâ€Heterocyclic 1,2â€Amino Alcohols. Advanced Synthesis and Catalysis, 2011, 353, 2321-2327.	2.1	27
250	Scalable Synthesis of Oxazolones from Propargylic Alcohols through Multistep Palladium(II) Catalysis: $\hat{I}^2 \hat{a} \in Selective$ Oxidative Heck Coupling of Cyclic Sulfonyl Enamides and Aryl Boroxines. Angewandte Chemie - International Edition, 2013, 52, 13745-13750.	7.2	27
251	Enzyme- and Ruthenium-Catalyzed Dynamic Kinetic Resolution of Functionalized Cyclic Allylic Alcohols. Journal of Organic Chemistry, 2013, 78, 12114-12120.	1.7	27
252	Palladium atalyzed Oxidative Carbocyclization–Borylation of Enallenes to Cyclobutenes. Angewandte Chemie, 2016, 128, 6630-6634.	1.6	27

#	Article	IF	CITATIONS
253	Palladium-Catalyzed Oxidative Domino Carbocyclization–Arylation of Bisallenes. ACS Catalysis, 2016, 6, 6398-6402.	5.5	26
254	Diastereoselective Synthesis of <i>N</i> -Protected 2,3-Dihydropyrroles via Iron-Catalyzed Cycloisomerization of α-Allenic Sulfonamides. ACS Catalysis, 2019, 9, 1733-1737.	5.5	26
255	Diastereoselective Cyclobutenol Synthesis: A Heterogeneous Palladium atalyzed Oxidative Carbocyclizationâ€Borylation of Enallenols. Chemistry - A European Journal, 2019, 25, 210-215.	1.7	26
256	High-yielding metalloenzymatic dynamic kinetic resolution of fluorinated aryl alcohols. Tetrahedron Letters, 2007, 48, 5471-5474.	0.7	25
257	Design of an Integrated Process of Chromatography, Crystallization and Racemization for the Resolution of 2′,6′-Pipecoloxylidide (PPX). Organic Process Research and Development, 2012, 16, 343-352.	1.3	25
258	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie - International Edition, 2020, 59, 10391-10395.	7.2	25
259	Silylcupration of styrenes followed by electrophilic trapping reaction. Chemical Communications, 2001, , 265-266.	2.2	24
260	Transition Metal-Catalyzed Epoxidation of Alkenes. , 2005, , 21-49.		24
261	Highly Selective Construction of Sevenâ€Membered Carbocycles by Olefinâ€Assisted Palladium atalyzed Oxidative Carbocyclization–Alkoxycarbonylation of Bisallenes. Angewandte Chemie, 2016, 128, 14617-14620.	1.6	24
262	Efficient Heterogeneous Palladium atalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 1992-1996.	7.2	24
263	Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates. , 2005, , 223-251.		23
264	Molecular orientation of thiol-derivatized tetraphenylporphyrin on gold studied by XPS and NEXAFS. Surface Science, 2009, 603, 1026-1033.	0.8	23
265	Covalent anchoring of a racemization catalyst to CALB-beads: towards dual immobilization of DKR catalysts. Tetrahedron Letters, 2011, 52, 1601-1604.	0.7	23
266	Highly Diastereoselective Palladium-Catalyzed Oxidative Carbocyclization of Enallenes Assisted by a Weakly Coordinating Hydroxyl Group. Journal of the American Chemical Society, 2018, 140, 3210-3214.	6.6	23
267	Kinetics and Mechanism of the Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes. Journal of the American Chemical Society, 2018, 140, 298-309.	6.6	23
268	New chiral diamide ligands containing redox-active hydroquinone groups. Synthesis and results in the palladium(II)-catalyzed 1,4-diacetoxylation of 1,3-dienes. Journal of Organometallic Chemistry, 2003, 687, 508-517.	0.8	22
269	Unusual Homocoupling in the Reaction of Diorganocuprates with an Allylic Halide. Organometallics, 2006, 25, 2129-2132.	1.1	22
270	Ironâ€catalyzed Crossâ€Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes. Angewandte Chemie, 2016, 128, 3798-3802.	1.6	22

#	Article	IF	CITATIONS
271	Competitive palladium-promoted amination of butenes. Tetrahedron Letters, 1975, 16, 819-822.	0.7	21
272	Influence of δâ€Functional Groups on the Enantiorecognition of Secondary Alcohols by <i>Candida antarctica</i> Lipase B. ChemBioChem, 2008, 9, 1968-1974.	1.3	21
273	Removing the Activeâ€Site Flap in Lipaseâ€A from <i>Candida antarctica</i> Produces a Functional Enzyme without Interfacial Activation. ChemBioChem, 2016, 17, 141-145.	1.3	21
274	Palladiumâ€Catalyzed Oxidative Synthesis of αâ€Acetoxylated Enones from Alkynes. Angewandte Chemie - International Edition, 2016, 55, 5824-5828.	7.2	21
275	Efficient Stereoselective Carbocyclization to <i>cis</i> -1,4-Disubstituted Heterocycles Enabled by Dual Pd/Electron Transfer Mediator (ETM) Catalysis. Journal of the American Chemical Society, 2020, 142, 5751-5759.	6.6	21
276	Highly Selective Negishi Cross-Coupling Reaction of a Zinc-Metallated Ferrocenyl p-Tolyl Sulfoxide: New Chiral Ferrocene-Based Quinone Ligands. European Journal of Organic Chemistry, 2003, 2003, 2756-2763.	1.2	20
277	Dynamic kinetic asymmetric transformation of 1,4-diols and the preparation of trans-2,5-disubstituted pyrrolidines. Tetrahedron Letters, 2009, 50, 3237-3240.	0.7	20
278	Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Materials, 2014, 2, 113316.	2.2	20
279	A General Approach to Indolizidine Alkaloids From 1-Benzyloxy-5-(p-toluenesulfonamido)-3-alken-2-ols: Synthesis of (+)-Monomorine I. European Journal of Organic Chemistry, 1999, 1999, 3277-3280.	1.2	19
280	Unexpected Formation of the Isopropylamine Complex $[2,3,4,5-Ph4(\hat{l}\cdot 4-C4CO)](CO)2Ru(H2NCHMe2)$ in the Attempted Synthesis of an Isopropyl Alcohol Complex. Organometallics, 2002, 21, 1955-1959.	1.1	19
281	Synthesis of Thioacetate-Functionalized Cobalt(II) Porphyrins and Their Immobilization on Gold Surface $\hat{a} \in$ Characterization by X-ray Photoelectron Spectroscopy. European Journal of Organic Chemistry, 2006, 2006, 1193-1199.	1.2	19
282	A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols. Dalton Transactions, 2013, 42, 927-934.	1.6	19
283	Iron(II)â€Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angewandte Chemie, 2020, 132, 5441-5444.	1.6	19
284	Cobalttetra(hydrochinon)porphyrin als wirkungsvoller ElektronenübertrÃger bei der aeroben Pdâ€katalysierten 1,4â€Diacetoxylierung von 1,3â€Cyclohexadien. Angewandte Chemie, 1993, 105, 269-271.	1.6	18
285	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie, 2018, 130, 17084-17088.	1.6	18
286	Methyl Migration and Transannular 1,5-Hydride Shift on Oxidative Cleavage of CPd Bonds with CuCl2. Angewandte Chemie International Edition in English, 1985, 24, 207-208.	4.4	17
287	Stereoselective Route towards 2,5-Disubstituted Piperidine Alkaloids. Synthesis of (+)-Pseudoconhydrine and (±)-epi-Pseudoconhydrine. Tetrahedron, 2000, 56, 2225-2230.	1.0	17
288	Copper-Mediated Enantioselective Substitution Reactions., 0,, 259-288.		17

#	Article	lF	Citations
289	Synthesis and optical resolution of an allenoic acid by diastereomeric salt formation induced by chiral alkaloids. Chirality, 2008, 20, 47-50.	1.3	17
290	Heterogenized Wilkinsonâ€Type Catalyst for Transfer Hydrogenation of Carbonyl Compounds. European Journal of Organic Chemistry, 2011, 2011, 4409-4414.	1.2	17
291	Tuning of the Electronic Properties of a Cyclopentadienylruthenium Catalyst to Match Racemization of Electronâ€Rich and Electronâ€Deficient Alcohols. Chemistry - A European Journal, 2011, 17, 11216-11222.	1.7	17
292	Transition metal-catalyzed redox isomerization of codeine and morphine in water. RSC Advances, 2014, 4, 39519-39522.	1.7	17
293	Aminoâ€Supported Palladium Catalyst for Chemo―and Stereoselective Domino Reactions. Angewandte Chemie - International Edition, 2021, 60, 670-674.	7.2	17
294	Enantiocontrolled Synthesis of 3-Pyrrolines fromα-Amino Allenes. European Journal of Organic Chemistry, 2004, 2004, 3240-3243.	1.2	16
295	Migratory Dynamic Kinetic Resolution of Carbocyclic Allylic Alcohols. Organic Letters, 2014, 16, 5952-5955.	2.4	16
296	Enantioselective Palladium atalyzed Carbonylative Carbocyclization of Enallenes via Crossâ€Dehydrogenative Coupling with Terminal Alkynes: Efficient Construction of α hirality of Ketones. Angewandte Chemie, 2017, 129, 4606-4610.	1.6	16
297	Silylcupration of 1,3-Dienes Followed by an Electrophilic Trapping Reaction. Organic Letters, 2001, 3, 1861-1864.	2.4	15
298	Aerobic Oxidations and Related Reactions Catalyzed by N-Hydroxyphthalimide., 2005, , 119-163.		15
299	Fast and mild palladium(ii)-catalyzed 1,4-oxidation of 1,3-dienes via activation of molecular oxygen with a designed cobalt(ii) porphyrin. Chemical Communications, 2005, , $1282-1284$.	2.2	15
300	Investigation of a Possible Solvent Cage Effect in the Reduction of 4â€Aminocyclohexanone by a Hydroxycyclopentadienyl Ruthenium Hydride. Chemistry - A European Journal, 2008, 14, 9169-9174.	1.7	15
301	Unexpected Formation of a Cyclopentadienylruthenium Alkoxycarbonyl Complex with a Coordinated Câ•€ Bond. Journal of the American Chemical Society, 2009, 131, 13622-13624.	6.6	15
302	Palladium atalyzed Oxidative Regio―and Diastereoselective Diarylating Carbocyclization of Dienynes. Chemistry - A European Journal, 2013, 19, 6571-6575.	1.7	15
303	Wellâ€Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water. Chemistry - A European Journal, 2015, 21, 5909-5915.	1.7	15
304	Enzyme―and Rutheniumâ€Catalyzed Enantioselective Transformation of αâ€Allenic Alcohols into 2,3â€Dihydrofurans. Angewandte Chemie, 2016, 128, 5658-5662.	1.6	15
305	Heterogeneous Acid atalyzed Racemization of Tertiary Alcohols. Chemistry - A European Journal, 2018, 24, 77-80.	1.7	15
306	Aerobic palladium-catalysed 1,4-cis-diacetoxylation and 1,4-cis-chloroacetoxylation of cyclohexa-1,3-diene using a tetrakis(methoxyhydroquinone)porphyrin. Journal of the Chemical Society Chemical Communications, 1993, , 1331-1332.	2.0	14

#	Article	IF	CITATIONS
307	Aerobic Oxidations Catalyzed by Zeoliteâ€Encapsulated Cobalt Salophen. Advanced Synthesis and Catalysis, 2008, 350, 1807-1815.	2.1	14
308	Efficient Synthesis of Hybrid (Hydroquinone–Schiff base)cobalt Oxidation Catalysts. European Journal of Organic Chemistry, 2009, 2009, 3973-3976.	1.2	14
309	Selective Cascade Reaction of Bisallenes via Palladiumâ€Catalyzed Aerobic Oxidative Carbocyclization–Borylation and Aldehyde Trapping. Angewandte Chemie, 2017, 129, 1612-1616.	1.6	13
310	Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Catalysis Science and Technology, 2017, 7, 293-299.	2.1	13
311	Selective Palladiumâ€Catalyzed Allenic Câ^H Bond Oxidation for the Synthesis of [3]Dendralenes. Angewandte Chemie, 2017, 129, 13292-13296.	1.6	13
312	Transesterification of a Tertiary Alcohol by Engineered <i>Candida antarctica</i> Lipaseâ€A. ChemBioChem, 2019, 20, 1438-1443.	1.3	13
313	Iron(II) atalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angewandte Chemie - International Edition, 2021, 60, 11819-11823.	7.2	13
314	Evidence for trans-acetoxypalladation of alkenes in chloride-free media. Journal of Organometallic Chemistry, 1983, 244, 401-407.	0.8	12
315	Kinetic Studies of Acetate Exchange intrans-4-Acetoxy- $[\hat{l}\cdot 3-(1,2,3)$ -cyclohexenyl]palladium Complexes. Relevance for Asymmetric 1,4-Oxidation Reactions. Organometallics, 2002, 21, 3367-3375.	1.1	12
316	Recent Developments in the Osmium-Catalyzed Dihydroxylation of Olefins. , 2005, , 1-20.		12
317	Investigation of the Impact of Water on the Enantioselectivity Displayed by CALB in the Kinetic Resolution of Î'â€Functionalized Alkanâ€2â€ol Derivatives. Chemistry - A European Journal, 2014, 20, 13517-1352	1 ^{1.7}	12
318	Dispersed Gold Nanoparticles Supported in the Pores of Siliceous Mesocellular Foam: A Catalyst for Cycloisomerization of Alkynoic Acids to γâ€Alkylidene Lactones. European Journal of Organic Chemistry, 2015, 2050-2255.	1.2	12
319	Evaluation of Fe and Ru Pincerâ€√ype Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols. Chemistry - A European Journal, 2016, 22, 11583-11586.	1.7	12
320	Efficient Palladiumâ€Catalyzed Aerobic Oxidative Carbocyclization to Sevenâ€Membered Heterocycles. Chemistry - A European Journal, 2020, 26, 15513-15518.	1.7	12
321	Evidence for Reversible Aminopalladation of Olefins Acta Chemica Scandinavica, 1984, 38b, 91-93.	0.7	12
322	Organocatalytic Oxidation. Ketone-Catalyzed Asymmetric Epoxidation of Olefins., 2005,, 51-82.		11
323	Prediction of the <i>Candida antarctica</i> Lipase A Protein Structure by Comparative Modeling and Siteâ€Directed Mutagenesis. ChemBioChem, 2007, 8, 1409-1415.	1.3	11
324	Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB. Tetrahedron, 2012, 68, 7613-7618.	1.0	11

#	Article	IF	CITATIONS
325	Nanopalladium-catalyzed conjugate reduction of Michael acceptors – application in flow. Green Chemistry, 2016, 18, 2632-2637.	4.6	11
326	Highly Selective Olefinâ€Assisted Pd ^{II} â€Catalyzed Oxidative Alkynylation of Enallenes. Chemistry - A European Journal, 2017, 23, 7896-7899.	1.7	11
327	Mechanistic Insight into Enantioselective Palladiumâ€Catalyzed Oxidative Carbocyclization–Borylation of Enallenes. Chemistry - A European Journal, 2018, 24, 2433-2439.	1.7	11
328	Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chemical Communications, 2021, 57, 8814-8817.	2.2	11
329	Palladium atalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie, 2017, 129, 3269-3273.	1.6	10
330	Efficient Heterogeneous Palladium atalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie, 2020, 132, 2008-2012.	1.6	10
331	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie, 2020, 132, 10477-10481.	1.6	10
332	In Situ Structural Determination of a Homogeneous Ruthenium Racemization Catalyst and Its Activated Intermediates Using Xâ∈Ray Absorption Spectroscopy. Chemistry - A European Journal, 2020, 26, 3411-3419.	1.7	10
333	Selective Oxidation of Amines and Sulfides. , 2005, , 193-222.		9
334	Manganese-Based Oxidation with Hydrogen Peroxide., 2005,, 295-326.		9
335	Chemoenzymatic Deracemization Processes. , 0, , 113-144.		9
336	Performance of a Biomimetic Oxidation Catalyst Immobilized on Silicon Wafers: Comparison with Its Gold Congenerâ€. Langmuir, 2010, 26, 16349-16354.	1.6	9
337	Performance of a biomimetic oxidation catalyst immobilized on silica particles. Journal of Catalysis, 2013, 303, 16-21.	3.1	9
338	Efficient Heterogeneous Copper-Catalyzed Alder-Ene Reaction of Allenynamides to Pyrrolines. ACS Catalysis, 2022, 12, 1791-1796.	5.5	9
339	Recycling of pipecoloxylidide via racemization. Tetrahedron Letters, 2010, 51, 6802-6805.	0.7	8
340	Application and Mechanistic Studies of a Waterâ€Oxidation Catalyst in Alcohol Oxidation by Employing Oxygenâ€Transfer Reagents. Chemistry - A European Journal, 2012, 18, 16947-16954.	1.7	8
341	Highly Diastereoselective Palladium-Catalyzed Oxidative Cascade Carbonylative Carbocyclization of Enallenols. Organic Letters, 2020, 22, 417-421.	2.4	8
342	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie, 2021, 133, 15818-15836.	1.6	8

#	Article	IF	Citations
343	Ruthenium-Catalyzed Oxidation of Alkenes, Alcohols, Amines, Amides, \hat{l}^2 -Lactams, Phenols, and Hydrocarbons. , 2005, , 165-191.		7
344	Ruthenium atalysed Epimerisation of Carbohydrate Alcohols as a Method to Determine the Equilibria for Epimer Interconversion in Hexopyranosides. European Journal of Organic Chemistry, 2011, 2011, 4455-4459.	1.2	7
345	Efficient 1,3â€Oxazolidinâ€2â€one Synthesis through Heterogeneous Pd ^{II} â€Catalyzed Intramolecular Hydroamination of Propargylic Carbamates. Chemistry - A European Journal, 2019, 25, 6295-6299.	1.7	7
346	Synthesis of Cross-Conjugated Polyenes via Palladium-Catalyzed Oxidative C–C Bond Forming Cascade Reactions of Allenes. Journal of Organic Chemistry, 2020, 85, 5428-5437.	1.7	7
347	Iron(II)â€Catalyzed Aerobic Biomimetic Oxidation of Nâ€Heterocycles. Chemistry - A European Journal, 2021, 27, 13725-13729.	1.7	7
348	Palladium-Catalyzed Oxidation of Dienes. , 2003, , 653-681.		6
349	Chemoenzymatic dynamic kinetic resolution as a key step in the enantioselective synthesis of (S)-salbutamol. Collection of Czechoslovak Chemical Communications, 2011, 76, 919-927.	1.0	6
350	Investigation of the Deactivation and Reactivation Mechanism of a Heterogeneous Palladium(II) Catalyst in the Cycloisomerization of Acetylenic Acids by ⟨i⟩In Situ⟨/i⟩ XAS . ACS Catalysis, 2021, 11, 2999-3008.	5.5	6
351	Aerobic Heterogeneous Palladium-Catalyzed Oxidative Allenic Câ^'H Arylation: Benzoquinone as a Direct Redox Mediator between O ₂ and Pd. CCS Chemistry, 2021, 3, 1127-1137.	4.6	6
352	Friedelâ \in "Crafts reactions of a sulfonyl-substituted vinylic epoxide with various aromatics. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2051-2054.	1.3	5
353	Nucleophile Addition an (Ï€â€Allyl)palladiumâ€Komplexe: Steuerung des Angriffs am zentralen oder an den terminalen Kohlenstoffatomen durch Liganden. Angewandte Chemie, 1995, 107, 2767-2769.	1.6	4
354	Palladium-Catalyzed Allylic, Propargylic, and Allenic Substitution with Nitrogen, Oxygen, and Other Groups 15–17 Heteroatom Nucleophiles: CO and CN Bond Formation Involving Conjugated Dienes and Allylpalladium Intermediates. , 0, , 1859-1874.		4
355	Epimerization of Glycal Derivatives by a Cyclopentadienylruthenium Catalyst: Application to Metalloenzymatic DYKAT. Chemistry - A European Journal, 2014, 20, 14756-14762.	1.7	4
356	Chemoenzymatic Dynamic Kinetic Asymmetric Transformations of $\hat{I}^2 \hat{a} \in Hydroxyketones$. Chemistry - A European Journal, 2021, 27, 15623-15627.	1.7	4
357	Palladium atalyzed Oxidative Synthesis of αâ€Acetoxylated Enones from Alkynes. Angewandte Chemie, 2016, 128, 5918-5922.	1.6	3
358	An Efficient Approach to Regio―and Stereodefined Fullyâ€Substituted Alkenylsilanes by Pdâ€Catalyzed Allenic C(sp 3)â^'H Oxidation. Chemistry - A European Journal, 2019, 25, 11566-11573.	1.7	3
359	Aminoâ€Supported Palladium Catalyst for Chemo―and Stereoselective Domino Reactions. Angewandte Chemie, 2021, 133, 680-684.	1.6	3
360	Iron-catalyzed cross-couplings of propargylic substrates with Grignard reagents. Journal of Organometallic Chemistry, 2022, 964, 122304.	0.8	3

#	Article	IF	Citations
361	Cycloadditions to Enamines. , 0, , 993-1048.		2
362	Oxidation of Carbonyl Compounds. , 2005, , 253-294.		2
363	Dynamic Kinetic Resolutions. , 0, , 87-113.		2
364	Iron(II)â€Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angewandte Chemie, 2021, 133, 11925-11929.	1.6	2
365	Mechanism of Palladium-Catalyzed Allylic Acetoxylation of Cyclohexene. , 1998, 4, 1083.		2
366	Zeolite-Encapsulated Cobalt Salophen Complexes as Efficient Oxygen-Activating Catalysts in Palladium-Catalyzed Aerobic 1,4-Oxidation of 1,3-Dienes., 1999, 5, 1460.		2
367	Prediction of theCandida antarcticaLipase A Protein Structure by Comparative Modeling and Site-Directed Mutagenesis. ChemBioChem, 2008, 9, 2559-2559.	1.3	1
368	Racemization of Olefinic Alcohols by a Carbonyl(cyclopentadienyl)ruthenium Complex: Inhibition by the Carbonâ€"Carbon Double Bond. European Journal of Organic Chemistry, 2015, 2015, 2388-2393.	1.2	1
369	Ironâ€Catalyzed Crossâ€Coupling of Propargyl Ethers with Grignard Reagents for the Synthesis of Functionalized Allenes and Allenols. Angewandte Chemie, 2021, 133, 22352-22357.	1.6	1
370	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of \hat{l}^2 -Hydroxy Nitriles. A Route to Useful Precursors for \hat{l}^3 -Amino Alcohols. Advanced Synthesis and Catalysis, 2001, 343, 726-731.	2.1	1
371	Metal-catalyzed biomimetic aerobic oxidation of organic substrates. Advances in Catalysis, 2021, 69, 1-57.	0.1	1
372	Combined Metal Catalysis and Biocatalysis for an Efficient Deracemization Process. ChemInform, 2004, 35, no.	0.1	0
373	Nanocatalysis Meets Biology. Topics in Organometallic Chemistry, 2020, , 243-278.	0.7	0
374	The Importance of Nobel Prizes for Today's Research. ChemistryViews, 0, , .	0.0	0