
Pankaj Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658887/publications.pdf Version: 2024-02-01

PANKAI SINCH

#	Article	IF	CITATIONS
1	Gold nanoparticles: New routes across old boundaries. Advances in Colloid and Interface Science, 2019, 274, 102037.	7.0	72
2	Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. Journal of Controlled Release, 2014, 196, 295-306.	4.8	67
3	Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in experimental visceral leishmaniasis. International Journal of Biological Macromolecules, 2017, 105, 1220-1231.	3.6	59
4	Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. International Journal of Biological Macromolecules, 2019, 122, 1100-1114.	3.6	51
5	Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. Journal of Controlled Release, 2021, 337, 646-660.	4.8	47
6	1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydrate Polymers, 2018, 180, 365-375.	5.1	44
7	Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, 2016, 6, 71705-71718.	1.7	39
8	Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. Journal of Controlled Release, 2015, 220, 368-387.	4.8	32
9	Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2?. International Journal of Biological Macromolecules, 2021, 179, 33-44.	3.6	31
10	Pluronic F-127 Stabilised Docetaxel Nanocrystals Improve Apoptosis by Mitochondrial Depolarization in Breast Cancer Cells: Pharmacokinetics and Toxicity Assessment. Journal of Biomedical Nanotechnology, 2015, 11, 1747-1763.	0.5	24
11	Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. European Journal of Medicinal Chemistry, 2019, 167, 226-244.	2.6	24
12	Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Pharmaceutical Research, 2016, 33, 2617-2629.	1.7	23
13	Rutin phospholipid complexes confer neuro-protection in ischemic-stroke rats. RSC Advances, 2016, 6, 96445-96454.	1.7	22
14	Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics, 2022, 14, 831.	2.0	22
15	An updated review on exosomes: biosynthesis to clinical applications. Journal of Drug Targeting, 2021, 29, 925-940.	2.1	20
16	Enhanced apoptosis, survivin down-regulation and assisted immunochemotherapy by curcumin loaded amphiphilic mixed micelles for subjugating endometrial cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1953-1963.	1.7	19
17	Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharmaceutical Research, 2018, 35, 60.	1.7	19
18	Lipid based nanocarriers: A novel paradigm for topical antifungal therapy. Journal of Drug Delivery Science and Technology, 2021, 62, 102397.	1.4	19

Pankaj Singh

#	Article	IF	CITATIONS
19	Design and Development of Amphotericin B Bearing Polycaprolactone Microparticles for Macrophage Targeting. Journal of Biomedical Nanotechnology, 2011, 7, 50-51.	0.5	18
20	Synergistic Chemotherapeutic Activity of Curcumin Bearing Methoxypolyethylene Glycol-g-Linoleic Acid Based Micelles on Breast Cancer Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 4180-4190.	0.9	16
21	Arginine-α, β-dehydrophenylalanine Dipeptide Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutical Research, 2018, 35, 35.	1.7	16
22	Quality by Design-Based Crystallization of Curcumin Using Liquid Antisolvent Precipitation: Micromeritic, Biopharmaceutical, and Stability Aspects. Assay and Drug Development Technologies, 2020, 18, 11-33.	0.6	16
23	Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sciences, 2021, 267, 118973.	2.0	16
24	Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Current Neuropharmacology, 2023, 21, 493-516.	1.4	15
25	Nanosized complexation assemblies housed inside reverse micelles churn out monocytic delivery cores for bendamustine hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 198-210.	2.0	14
26	Doxorubicin Hydrochloride Loaded Zymosan-Polyethylenimine Biopolymeric Nanoparticles for Dual â€~Chemoimmunotherapeutic' Intervention in Breast Cancer. Pharmaceutical Research, 2017, 34, 1857-1871.	. 1.7	13
27	Amorphous systems for delivery of nutraceuticals: challenges opportunities. Critical Reviews in Food Science and Nutrition, 2022, 62, 1204-1221.	5.4	10
28	Development of modified apple polysaccharide capped silver nanoparticles loaded with mesalamine for effective treatment of ulcerative colitis. Journal of Drug Delivery Science and Technology, 2020, 60, 101980.	1.4	9
29	Novel Validated RP-HPLC Method for Bendamustine Hydrochloride Based on Ion-pair Chromatography: Application in Determining Infusion Stability and Pharmacokinetics. Journal of Chromatographic Science, 2017, 55, 30-39.	0.7	8
30	An Update on Sophisticated and Advanced Analytical Tools for Surface Characterization of Nanoparticles. Surfaces and Interfaces, 2022, 33, 102165.	1.5	8
31	Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminished cardiotoxicity. Biochemical and Biophysical Research Communications, 2018, 503, 677-683.	1.0	7
32	A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Molecular Biology Reports, 2022, 49, 2375-2391.	1.0	5
33	Acute and Subacute Toxicity Assessment of Andrographolide-2-hydroxypropyl-Î2-cyclodextrin Complex via Oral and Inhalation Route of Administration in Sprague-Dawley Rats. Scientific World Journal, The, 2022, 2022, 1-9.	0.8	5
34	Strategy to counteract the pyrazinamide induced hepatotoxicity by developing naringin based Co-amorphous system with supplementary benefits. Journal of Drug Delivery Science and Technology, 2022, 69, 103181.	1.4	4
35	Budding Multi-matrix Technology—a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech, 2021, 22, 264.	1.5	3
36	Quality by Design-based Optimization of Formulation and Process Variables for Controlling Particle Size and Zeta Potential of Spray Dried Incinerated Copper Nanosuspension. Recent Innovations in Chemical Engineering, 2019, 12, 248-260.	0.2	2

#	Article	IF	CITATIONS
37	Luliconazole Topical Dermal Drug Delivery for Superficial Fungal Infections: Penetration Hurdles and Role of Functional Nanomaterials. Current Pharmaceutical Design, 2022, 28, 1611-1620.	0.9	2
38	Development of asolectin-based liposomal formulation for controlled and targeted delivery of erlotinib as a model drug for EGFR monotherapy. Journal of Liposome Research, 2022, , 1-10.	1.5	1