Kristina J Anderson-Teixeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658763/publications.pdf

Version: 2024-02-01

74 papers 6,898 citations

38 h-index 79644 73 g-index

81 all docs

81 docs citations

81 times ranked 9600 citing authors

#	Article	IF	CITATIONS
1	Larger trees suffer most during drought in forests worldwide. Nature Plants, 2015, 1, 15139.	4.7	622
2	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	6.0	576
3	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
4	Changes in soil organic carbon under biofuel crops. GCB Bioenergy, 2009, 1, 75-96.	2.5	343
5	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
6	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
7	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
8	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	13.7	278
9	Altered dynamics of forest recovery under a changing climate. Global Change Biology, 2013, 19, 2001-2021.	4.2	246
10	Life-cycle analysis and the ecology of biofuels. Trends in Plant Science, 2009, 14, 140-146.	4.3	218
11	Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops. Journal of Environmental Quality, 2013, 42, 219-228.	1.0	171
12	Climate-regulation services of natural and agricultural ecoregions of the Americas. Nature Climate Change, 2012, 2, 177-181.	8.1	165
13	Protecting irrecoverable carbon in Earth's ecosystems. Nature Climate Change, 2020, 10, 287-295.	8.1	159
14	Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology, 2017, 23, 4117-4132.	4.2	154
15	Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Global Change Biology, 2011, 17, 410-424.	4.2	148
16	Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems, 2013, 16, 508-520.	1.6	132
17	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
18	Carbon exchange by establishing biofuel crops in Central Illinois. Agriculture, Ecosystems and Environment, 2011, 144, 319-329.	2.5	115

#	Article	IF	CITATIONS
19	Influences of fire–vegetation feedbacks and postâ€fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology, 2018, 106, 1925-1940.	1.9	114
20	Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.	3.0	92
21	Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (<scp>T</scp> rop <scp>F</scp> or <scp>C</scp> â€db). Global Change Biology, 2016, 22, 1690-1709.	4.2	85
22	Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Scientific Reports, 2018, 8, 6749.	1.6	85
23	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	4.2	78
24	Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist, 2018, 219, 947-958.	3 . 5	73
25	Water use efficiency of perennial and annual bioenergy crops in central Illinois. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 581-589.	1.3	71
26	Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management, 2018, 427, 217-229.	1.4	69
27	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
28	Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist, 2021, 231, 601-616.	3 . 5	63
29	The greenhouse gas value of ecosystems. Global Change Biology, 2011, 17, 425-438.	4.2	60
30	Gap filling strategies and error in estimating annual soil respiration. Global Change Biology, 2013, 19, 1941-1952.	4.2	54
31	Ethanol from sugarcane in <scp>B</scp> razil: a â€~midway' strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy, 2012, 4, 119-126.	2.5	52
32	Hydraulicallyâ€vulnerable trees survive on deepâ€water access during droughts in a tropical forest. New Phytologist, 2021, 231, 1798-1813.	3.5	51
33	Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecology and Biogeography, 2018, 27, 581-592.	2.7	48
34	Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 2021, 229, 3065-3087.	3.5	48
35	Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant and Soil, 2016, 409, 435-446.	1.8	47
36	Joint effects of climate, tree size, and year on annual tree growth derived from treeâ€ring records of ten globally distributed forests. Global Change Biology, 2022, 28, 245-266.	4.2	46

#	Article	IF	CITATIONS
37	A restructured and updated global soil respiration database (SRDB-V5). Earth System Science Data, 2021, 13, 255-267.	3.7	42
38	Climate sensitive size-dependent survival in tropical trees. Nature Ecology and Evolution, 2018, 2, 1436-1442.	3.4	41
39	Carbon cycling in mature and regrowth forests globally. Environmental Research Letters, 2021, 16, 053009.	2.2	41
40	Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 228-233.	3.3	40
41	Biofuels on the landscape: Is "land sharing―preferable to "land sparing�. Ecological Applications, 2012, 22, 2035-2048.	1.8	39
42	Sizeâ€related scaling of tree form and function in a mixedâ€ege forest. Functional Ecology, 2015, 29, 1587-1602.	1.7	39
43	ForC: a global database of forest carbon stocks and fluxes. Ecology, 2018, 99, 1507-1507.	1.5	37
44	Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere, 2016, 7, e01595.	1.0	32
45	Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop. PLoS ONE, 2013, 8, e72019.	1.1	30
46	Alteration of forest succession and carbon cycling under elevated CO ₂ . Global Change Biology, 2016, 22, 351-363.	4.2	30
47	Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. New Phytologist, 2021, 230, 485-496.	3.5	30
48	Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fireâ€prone community. Ecography, 2019, 42, 55-66.	2.1	28
49	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
50	Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands. PLoS ONE, 2016, 11, e0169020.	1.1	25
51	Consequences of spatial patterns for coexistence in species-rich plant communities. Nature Ecology and Evolution, 2021, 5, 965-973.	3.4	24
52	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
53	Sapling growth rates reveal conspecific negative density dependence in a temperate forest. Ecology and Evolution, 2017, 7, 7661-7671.	0.8	23
54	Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytologist, 2019, 223, 1204-1216.	3.5	21

#	Article	IF	CITATIONS
55	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	2.2	21
56	Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 2019, 14, e0222119.	1.1	20
57	Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Global Ecology and Biogeography, 2018, 27, 958-967.	2.7	18
58	Global patterns of forest autotrophic carbon fluxes. Global Change Biology, 2021, 27, 2840-2855.	4.2	18
59	Root volume distribution of maturing perennial grasses revealed by correcting for minirhizotron surface effects. Plant and Soil, 2017, 419, 391-404.	1.8	17
60	Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia, 2019, 191, 519-530.	0.9	14
61	Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
62	Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia, 2020, 192, 501-514.	0.9	12
63	Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient. Ecology Letters, 2020, 23, 1499-1510.	3.0	12
64	Long-Term Impacts of Invasive Insects and Pathogens on Composition, Biomass, and Diversity of Forests in Virginia's Blue Ridge Mountains. Ecosystems, 2021, 24, 89-105.	1.6	12
65	Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient. Ecology Letters, 2020, 23, 160-171.	3.0	11
66	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2.2	11
67	Seasonality affects specialisation of a temperate forest herbivore community. Oikos, 2021, 130, 1450-1461.	1.2	8
68	Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. Global Change Biology, 2022, 28, 2895-2909.	4.2	8
69	Prioritizing biodiversity and carbon. Nature Climate Change, 2018, 8, 667-668.	8.1	6
70	Effective forestâ€based climate change mitigation requires our best science. Global Change Biology, 2022, 28, 1200-1203.	4.2	6
71	Role of arthropod communities in bioenergy crop litter decompositionâ€. Insect Science, 2013, 20, 671-678.	1.5	5
72	Terrestrial LiDAR-derived non-destructive woody biomass estimates for 10 hardwood species in Virginia. Data in Brief, 2018, 19, 1560-1569.	0.5	5

#	Article	IF	CITATIONS
73	NO SIGNIFICANT INCREASE IN TREE MORTALITY FOLLOWING CORING IN A TEMPERATE HARDWOOD FOREST. Tree-Ring Research, 2019, 75, 67.	0.4	5

Climatic Aridity Shapes Post-Fire Interactions between Ceanothus spp. and Douglas-Fir (Pseudotsuga) Tj ETQq0 0 0, gBT /Overlock 10 Tf