
Abani Kumar Pradhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning-based predictive modeling to identify genotypic traits associated with Salmonella enterica disease endpoints in isolates from ground chicken. LWT - Food Science and Technology, 2022, 154, 112701.	5.2	14
2	Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica. Food Research International, 2022, 151, 110817.	6.2	10
3	Ethical, legal, social, and economic (ELSE) implications of artificial intelligence at a global level: a scientometrics approach. Al and Ethics, 2022, 2, 667-682.	6.8	7
4	Development of a novel machine learningâ€based weighted modeling approach to incorporate <i>Salmonella enterica</i> heterogeneity on a genetic scale in a dose–response modeling framework. Risk Analysis, 2022, , .	2.7	1
5	A Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens, 2022, 11, 691.	2.8	11
6	Evaluating uncertainty and variability associated with Toxoplasma gondii survival during cooking and low temperature storage of fresh cut meats. International Journal of Food Microbiology, 2021, 341, 109031.	4.7	7
7	Predictive models for the effect of environmental factors on the abundance of Vibrio parahaemolyticus in oyster farms in Taiwan using extreme gradient boosting. Food Control, 2021, 130, 108353.	5.5	13
8	Low prevalence of viable Toxoplasma gondii in fresh, unfrozen, American pasture-raised pork and lamb from retail meat stores in the United States. Food Control, 2020, 109, 106961.	5.5	8
9	Evaluation of public health risk for Escherichia coli O157:H7 in cilantro. Food Research International, 2020, 136, 109545.	6.2	4
10	Evaluation and meta-analysis of test accuracy of direct PCR and bioassay methods for detecting Toxoplasma gondii in meat samples. LWT - Food Science and Technology, 2020, 131, 109666.	5.2	8
11	Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. Journal of Agriculture and Food Research, 2020, 2, 100045.	2.5	11
12	Effect of cultivars and irrigation waters on persistence of indicator bacteria on lettuce grown in high tunnel. Journal of Food Safety, 2020, 40, e12795.	2.3	4
13	Distribution of Toxoplasma gondii Tissue Cysts in Shoulder Muscles of Naturally Infected Goats and Lambs. Journal of Food Protection, 2020, 83, 1396-1401.	1.7	19
14	Foodborne Disease Outbreaks Associated With Organic Foods: Animal and Plant Products. , 2019, , 135-150.		2
15	Modeling the effects of infection status and hygiene practices on Mycobacterium avium subspecies paratuberculosis contamination in bulk tank milk. Food Control, 2019, 104, 367-376.	5.5	6
16	Elucidating Transmission Patterns of Endemic Mycobacterium avium subsp. paratuberculosis Using Molecular Epidemiology. Veterinary Sciences, 2019, 6, 32.	1.7	6
17	Predictive Microbiology and Microbial Risk Assessment. , 2019, , 989-1006.		4
18	Age-Associated Distribution of Antimicrobial-Resistant <i>Salmonella enterica</i> and <i>Escherichia coli</i> Isolated from Dairy Herds in Pennsylvania, 2013–2015. Foodborne Pathogens and Disease, 2019, 16, 60-67.	1.8	29

#	Article	IF	CITATIONS
19	Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans. Journal of Food Protection, 2018, 81, 308-315.	1.7	15
20	Evaluation of meteorological factors associated with pre-harvest contamination risk of generic Escherichia coli in a mixed produce and dairy farm. Food Control, 2018, 85, 135-143.	5.5	15
21	Development of growth and survival models for Salmonella and Listeria monocytogenes during non-isothermal time-temperature profiles in leafy greens. Food Control, 2017, 71, 32-41.	5.5	37
22	Prevalence and genetic characterization of Toxoplasma gondii in free-range chickens from grocery stores and farms in Maryland, Ohio and Massachusetts, USA. Parasitology Research, 2017, 116, 1591-1595.	1.6	14
23	Identifying and modeling meteorological risk factors associated with pre-harvest contamination of Listeria species in a mixed produce and dairy farm. Food Research International, 2017, 102, 355-363.	6.2	30
24	A System Model for Understanding the Role of Animal Feces as a Route of Contamination of Leafy Greens before Harvest. Applied and Environmental Microbiology, 2017, 83, .	3.1	15
25	Quantifying the risk of human Toxoplasma gondii infection due to consumption of fresh pork in the United States. Food Control, 2017, 73, 1210-1222.	5.5	17
26	Prediction of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes Growth in Leafy Greens without Temperature Control. Journal of Food Protection, 2017, 80, 68-73.	1.7	9
27	Quantitative Microbial Risk Assessment for Escherichia coli O157:H7 in Fresh-Cut Lettuce. Journal of Food Protection, 2017, 80, 302-311.	1.7	63
28	Quantifying the Risk of Human Toxoplasma gondii Infection Due to Consumption of Domestically Produced Lamb in the United States. Journal of Food Protection, 2016, 79, 1181-1187.	1.7	16
29	Development of Doseâ€Response Models to Predict the Relationship for Human <i>Toxoplasma gondii</i> Infection Associated with Meat Consumption. Risk Analysis, 2016, 36, 926-938.	2.7	11
30	Impact of the shedding level on transmission of persistent infections in Mycobacterium avium subspecies paratuberculosis (MAP). Veterinary Research, 2016, 47, 38.	3.0	19
31	Cost, quality, and safety: A nonlinear programming approach to optimize the temperature during supply chain of leafy greens. LWT - Food Science and Technology, 2016, 73, 412-418.	5.2	14
32	Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods. International Journal of Food Microbiology, 2016, 216, 79-90.	4.7	21
33	A Systematic Meta-Analysis of <i>Toxoplasma gondii</i> Prevalence in Food Animals in the United States. Foodborne Pathogens and Disease, 2016, 13, 109-118.	1.8	45
34	Modeling the long-term kinetics of Salmonella survival on dry pet food. Food Microbiology, 2016, 58, 1-6.	4.2	20
35	Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food. Critical Reviews in Food Science and Nutrition, 2016, 56, 364-418.	10.3	28
36	Dynamics of Escherichia coli Virulence Factors in Dairy Herds and Farm Environments in a Longitudinal Study in the United States. Applied and Environmental Microbiology, 2015, 81, 4477-4488.	3.1	19

Abani Kumar Pradhan

#	Article	IF	CITATIONS
37	Prevalence and Risk Factors for Toxoplasma gondii Infection in Meat Animals and Meat Products Destined for Human Consumption. Journal of Food Protection, 2015, 78, 457-476.	1.7	129
38	Qualitative Assessment for Toxoplasma gondii Exposure Risk Associated with Meat Products in the United States. Journal of Food Protection, 2015, 78, 2207-2219.	1.7	27
39	Prediction of Listeria innocua survival in fully cooked chicken breast products during postpackage thermal treatment. Poultry Science, 2013, 92, 827-835.	3.4	4
40	A predictive model for assessment of decontamination effects of lactic acid and chitosan used in combination on Vibrio parahaemolyticus in shrimps. International Journal of Food Microbiology, 2013, 167, 124-130.	4.7	21
41	A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage. Poultry Science, 2012, 91, 1482-1488.	3.4	38
42	Environmental contamination with Mycobacterium avium subsp. paratuberculosis in endemically infected dairy herds. Preventive Veterinary Medicine, 2011, 102, 1-9.	1.9	38
43	Molecular Epidemiology of Mycobacterium avium subsp. paratuberculosis in a Longitudinal Study of Three Dairy Herds. Journal of Clinical Microbiology, 2011, 49, 893-901.	3.9	57
44	Increased In Vitro Adherence and On-Farm Persistence of Predominant and Persistent Listeria monocytogenes Strains in the Milking System. Applied and Environmental Microbiology, 2011, 77, 3676-3684.	3.1	33
45	A Predictive Model for the Inactivation of Listeria innocua in Cooked Poultry Products during Postpackage Pasteurization. Journal of Food Protection, 2011, 74, 1261-1267.	1.7	13
46	Quantitative Risk Assessment of Listeriosis Due to Consumption of Raw Milkâ€. Journal of Food Protection, 2011, 74, 1268-1281.	1.7	51
47	Comparison of Public Health Impact of Listeria monocytogenes Product-to-Product and Environment-to-Product Contamination of Deli Meats at Retail. Journal of Food Protection, 2011, 74, 1860-1868.	1.7	31
48	Quantitative Risk Assessment of Listeriosis-Associated Deaths Due to Listeria monocytogenes Contamination of Deli Meats Originating from Manufacture and Retail. Journal of Food Protection, 2010, 73, 620-630.	1.7	71
49	Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science, 2010, 93, 2792-2802.	3.4	132
50	Effect of Johne's disease status on reproduction and culling in dairy cattle. Journal of Dairy Science, 2010, 93, 3513-3524.	3.4	60
51	Quantitative Risk Assessment for Listeria monocytogenes in Selected Categories of Deli Meats: Impact of Lactate and Diacetate on Listeriosis Cases and Deaths. Journal of Food Protection, 2009, 72, 978-989.	1.7	60
52	Molecular Ecology of <i>Listeria monocytogenes</i> : Evidence for a Reservoir in Milking Equipment on a Dairy Farm. Applied and Environmental Microbiology, 2009, 75, 1315-1323.	3.1	73
53	Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States. Journal of Dairy Science, 2009, 92, 1811-1825.	3.4	59
54	A longitudinal study on the impact of Johne's disease status on milk production in individual cows. Journal of Dairy Science, 2009, 92, 2653-2661.	3.4	72

#	Article	IF	CITATIONS
55	Pathogen Kinetics and Heat and Mass Transfer–Based Predictive Model for Listeria innocua in Irregular-Shaped Poultry Products during Thermal Processing. Journal of Food Protection, 2007, 70, 607-615.	1.7	12