Dao-Fu Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658633/publications.pdf

Version: 2024-02-01

687363 552781 36 716 13 26 h-index citations g-index papers 37 37 37 677 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	pH effect on oxygen reduction reaction at Pt(111) electrode. Electrochimica Acta, 2013, 110, 780-789.	5.2	107
2	Observation of the geometric phase effect in the H + HD → H ₂ + D reaction. Science, 2018, 362, 1289-1293.	12.6	99
3	On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Physical Chemistry Chemical Physics, 2013, 15, 4367.	2.8	77
4	Direct observation of forward-scattering oscillations in the H+HDâ†'H2+D reaction. Nature Chemistry, 2018, 10, 653-658.	13.6	46
5	B ₄₈ ^{â^'} : a bilayer boron cluster. Nanoscale, 2021, 13, 3868-3876.	5.6	43
6	Observation of the geometric phase effect in the H+HDâ†'H2+D reaction below the conical intersection. Nature Communications, 2020, 11, 3640.	12.8	30
7	Observation of a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ï€</mml:mi></mml:math> -Type Dipole-Bound State in Molecular Anions. Physical Review Letters, 2020, 125, 073003.	7.8	25
8	VUV Photodissociation Dynamics of Nitrous Oxide: The O($\langle \sup 1 < \sup S < \sup$	2.5	22
9	Observation of the Carbon Elimination Channel in Vacuum Ultraviolet Photodissociation of OCS. Journal of Physical Chemistry Letters, 2019, 10, 4783-4787.	4.6	19
10	Photoelectron Spectroscopy of Size-Selected Bismuth–Boron Clusters: BiB _{<i>n</i>} [–] (<i>n</i> = 6–8). Journal of Physical Chemistry A, 2021, 125, 6751-6760.	2.5	18
11	Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science, 2021, 371, 936-940.	12.6	17
12	Polarization of Valence Orbitals by the Intramolecular Electric Field from a Diffuse Dipole-Bound Electron. Journal of Physical Chemistry Letters, 2020, 11, 7914-7919.	4.6	15
13	VUV Photodissociation Dynamics of Nitrous Oxide: The N($\langle \sup 2 /\sup D \langle \sup 3 /2 /i \rangle = 3/2,5/2 /\sup \rangle$) and N($\langle \sup 2 /\sup P \rangle P \langle \sup P \rangle = 1/2,3/2 /\sup \rangle$) Product Channels. Journal of Physical Chemistry A, 2016, 120, 4966-4972.	2.5	14
14	Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically cooled 1-pyrenolate. Journal of Chemical Physics, 2021, 154, 094308.	3.0	14
15	Photodissociation Dynamics of Nitrous Oxide near 145 nm: The O(¹ S ₀) and O(³ P _{<i>J</i>=2,1,0}) Product Channels. Journal of Physical Chemistry A, 2018, 122, 2663-2669.	2.5	13
16	Vacuum ultraviolet photodissociation dynamics of CO2 near 133 nm: The spin-forbidden $O(3Pj=2,1,0) + CO(X1Σ+)$ channel. Journal of Chemical Physics, 2019, 151, 214306.	3.0	13
17	Probing the Dipole-Bound State in the 9-Phenanthrolate Anion by Photodetachment Spectroscopy, Resonant Two-Photon Photoelectron Imaging, and Resonant Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 2967-2976.	2.5	12
18	Observation of a Symmetry-Forbidden Excited Quadrupole-Bound State. Journal of the American Chemical Society, 2020, 142, 20240-20246.	13.7	11

#	Article	IF	Citations
19	High-Resolution Experimental Study on Photodissocaition of N2O. Chinese Journal of Chemical Physics, 2016, 29, 135-139.	1.3	10
20	Photodissociation Dynamics of OCS near 150 nm: The S($<$ sup>1 $<$ /sup>S $<$ sub> $<$ i>J $<$ /i>=0 $<$ /sub>) and S($<$ sup>P $<$ sub> $<$ i>J $<$ /i>=2,1,0 $<$ /sub>) Product Channels. Journal of Physical Chemistry A, 2020, 124, 6420-6426.	2.5	10
21	Vacuum ultraviolet photodissociation dynamics of N2O via the C1Î state: The N(2Dj=5/2, 3/2) + NO(X2Î) product channels. Journal of Chemical Physics, 2018, 149, 104309.	3.0	9
22	Observation of a dipole-bound excited state in 4-ethynylphenoxide and comparison with the quadrupole-bound excited state in the isoelectronic 4-cyanophenoxide. Journal of Chemical Physics, 2021, 155, 124305.	3.0	9
23	Photodissociation dynamics of OCS near $128\hat{a}$ nm: S(3PJ=2,1,0), S(1D2) and S(1S0) channels. Chinese Journal of Chemical Physics, 2020, 33, 167-172.	1.3	8
24	Imaging the State-to-State Dynamics of the H + D $<$ sub $>$ 2 $<$ /sub $>$ → HD + D Reaction at 1.42 eV. Journal of Physical Chemistry Letters, 2020, 11, 1222-1227.	4.6	8
25	Observation of Core-Excited Dipole-Bound States. Journal of Physical Chemistry Letters, 2022, 13, 2124-2129.	4.6	8
26	Probing copper-boron interactions in the Cu2B8â^' bimetallic cluster. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	8
27	High resolution crossed molecular beams study of the H+HDâ†'H2+D reaction. Chinese Journal of Chemical Physics, 2019, 32, 123-128.	1.3	7
28	Vacuum ultraviolet photodissociation dynamics of OCS + <i>hv</i> ât' CO(¹ \hat{E} ⁺) + S(¹ S ₀) <i>via</i> the E and F Rydberg states. Physical Chemistry Chemical Physics, 2021, 23, 5809-5816.	2.8	7
29	Probing the electronic structure and spectroscopy of pyrrolyl and imidazolyl radicals using high-resolution photoelectron imaging of cryogenically cooled anions. Physical Chemistry Chemical Physics, 2022, 24, 6505-6514.	2.8	7
30	Determination of Isotherm for Acetate and Formate Adsorption at Pt(111) Electrode by Fast Scan Voltammetry. Chinese Journal of Chemical Physics, 2013, 26, 191-197.	1.3	5
31	A Revisit to the Role of Bridgeâ€adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid at Pt Electrodes. Chinese Journal of Chemical Physics, 2013, 26, 321-328.	1.3	5
32	Wavelength dependent photodissociation of OCS via $\langle i \rangle F \langle i \rangle$ 31ΠRydberg state: CO($\langle i \rangle X \langle i \rangle$ 1Σ+)+S(1D2) product channel. Chinese Journal of Chemical Physics, 2020, 33, 691-696.	1.3	5
33	Resonant two-photon photoelectron imaging and adiabatic detachment processes from bound vibrational levels of dipole-bound states. Physical Chemistry Chemical Physics, 2022, 24, 1380-1389.	2.8	5
34	Crossed Molecular Beam Study of H+CH ₄ and H+CD ₄ Reactions: Vibrationally Excited CH ₃ /CD ₃ Product Channels. Chinese Journal of Chemical Physics, 2017, 30, 609-613.	1.3	4
35	Generation of metastable krypton using a 124-nm laser. Physical Review A, 2022, 105, .	2.5	2
36	Crossed Molecular Beam Study of the H + HD → H ₂ + D Reaction at 0.60 and 1.26 eV Using the Near-Threshold Ionization Velocity Map Ion Imaging. Journal of Physical Chemistry A, 2022, 126, 4444-4450.	2.5	1