
Qiuquan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 2014, 105, .	1.5	305
2	Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. ACS Applied Materials & Interfaces, 2018, 10, 10998-11007.	4.0	194
3	Synthesis of Ag–TiO ₂ composite nano thin film for antimicrobial application. Nanotechnology, 2011, 22, 115603.	1.3	192
4	3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 767-780.	6.4	165
5	3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy, 2018, 44, 174-180.	8.2	151
6	Recyclable Polydopamine-Functionalized Sponge for High-Efficiency Clean Water Generation with Dual-Purpose Solar Evaporation and Contaminant Adsorption. ACS Applied Materials & Interfaces, 2019, 11, 32559-32568.	4.0	99
7	Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing. Journal of Materials Chemistry C, 2014, 2, 286-294.	2.7	97
8	Initiator-Integrated 3D Printing Enables the Formation of Complex Metallic Architectures. ACS Applied Materials & Interfaces, 2014, 6, 2583-2587.	4.0	95
9	i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chemical Communications, 2013, 49, 10064.	2.2	90
10	A lab-on-CD prototype for high-speed blood separation. Journal of Micromechanics and Microengineering, 2008, 18, 125025.	1.5	82
11	Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits. ACS Nano, 2016, 10, 396-404.	7.3	78
12	Characterization of cell elasticity correlated with cell morphology by atomic force microscope. Journal of Biomechanics, 2012, 45, 304-309.	0.9	69
13	Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chemical Engineering Journal, 2022, 439, 135593.	6.6	58
14	Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring. Biosensors and Bioelectronics, 2017, 91, 465-471.	5.3	56
15	3D-printed highly porous and reusable chitosan monoliths for Cu(II) removal. Journal of Materials Science, 2019, 54, 6728-6741.	1.7	50
16	3D Printing/Interfacial Polymerization Coupling for the Fabrication of Conductive Hydrogel. Macromolecular Materials and Engineering, 2018, 303, 1700356.	1.7	47
17	A high-flow, self-filling piezoelectric pump driven by hybrid connected multiple chambers with umbrella-shaped valves. Sensors and Actuators B: Chemical, 2019, 301, 126961.	4.0	46
18	"Paintable―3D printed structures via a post-ATRP process with antimicrobial function for biomedical applications. Journal of Materials Chemistry B, 2013, 1, 6644.	2.9	41

Qiuquan Guo

#	Article	IF	CITATIONS
19	Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter, 2011, 7, 6617.	1.2	40
20	SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits. ACS Applied Materials & Interfaces, 2016, 8, 4280-4286.	4.0	36
21	Highly thermal-stable and transparent silver nanowire conductive films <i>via</i> magnetic assisted electrodeposition of Ni. Journal of Materials Chemistry C, 2018, 6, 4887-4894.	2.7	36
22	Modeling of electroosmotic pumping of nonconducting liquids and biofluids by a two-phase flow method. Journal of Electroanalytical Chemistry, 2009, 636, 86-92.	1.9	34
23	Highâ€efficiency wireless power transfer system for 3D, unstationary freeâ€positioning and multiâ€object charging. IET Electric Power Applications, 2018, 12, 658-665.	1.1	34
24	Improved Performance by SiO ₂ Hollow Nanospheres for Silver Nanowire-Based Flexible Transparent Conductive Films. ACS Applied Materials & Interfaces, 2016, 8, 27055-27063.	4.0	27
25	Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer. Sensors and Actuators B: Chemical, 2018, 266, 204-212.	4.0	27
26	A Switchable Bandpass Filter Employing RF MEMS Switches and Open-Ring Resonators. IEEE Transactions on Electron Devices, 2017, 64, 3377-3383.	1.6	26
27	An inkjet-printed smartphone-supported electrochemical biosensor system for reagentless point-of-care analyte detection. Sensors and Actuators B: Chemical, 2021, 346, 130447.	4.0	23
28	Direct ink writing of recyclable and <i>in situ</i> repairable photothermal polyurethane for sustainable 3D printing development. Journal of Materials Chemistry A, 2021, 9, 6981-6992.	5.2	23
29	Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing. Nanotechnology, 2011, 22, 125302.	1.3	20
30	Large-area freestanding gold nanomembranes with nanoholes. Materials Horizons, 2019, 6, 1005-1012.	6.4	20
31	Magnetic-actuated "capillary container―for versatile three-dimensional fluid interface manipulation. Science Advances, 2021, 7, .	4.7	19
32	Solvent-transfer assisted photolithography of high-density and high-aspect-ratio superhydrophobic micropillar arrays. Journal of Micromechanics and Microengineering, 2015, 25, 025005.	1.5	16
33	Highâ€Performance Flexible Microâ€Supercapacitors Printed on Textiles for Powering Wearable Electronics. ChemElectroChem, 2021, 8, 1574-1579.	1.7	16
34	Hierarchical metal/polymer metamaterials of tunable negative Poisson's ratio fabricated by initiator-integrated 3D printing (i3DP). Nanotechnology, 2018, 29, 505704.	1.3	15
35	Initiator-Integrated 3-D Printing of Magnetic Object for Remote Controlling Application. IEEE Transactions on Magnetics, 2017, 53, 1-9.	1.2	13
36	Tunable Fluid-Type Metasurface for Wide-Angle and Multifrequency Water-Air Acoustic Transmission. Research, 2021, 2021, 9757943.	2.8	13

Qiuquan Guo

#	Article	IF	CITATIONS
37	Soluble salt-driven matrix swelling of a block copolymer for rapid fabrication of a conductive elastomer toward highly stretchable electronics. Materials and Design, 2016, 100, 263-270.	3.3	11
38	Pulsed ultraviolet light decontamination of virus-laden airstreams. Aerosol Science and Technology, 2017, 51, 554-563.	1.5	11
39	Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy. Journal of Applied Physics, 2009, 106, .	1.1	10
40	Robust nonreciprocal acoustic propagation in a compact acoustic circulator empowered by natural convection. New Journal of Physics, 2019, 21, 053001.	1.2	10
41	Silver nanofibers with controllable microstructure and crystal facet as highly efficient and methanol-tolerant oxygen reduction electrocatalyst. Journal of Power Sources, 2019, 413, 233-240.	4.0	10
42	Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator. Journal of Micromechanics and Microengineering, 2017, 27, 045013.	1.5	9
43	Tunable acoustic valley edge states in a flow-free resonator system. Applied Physics Letters, 2019, 115, .	1.5	9
44	The development of digital printing technologies for flexible electronics devices. Science in China Series G: Physics, Mechanics and Astronomy, 2016, 46, 044608.	0.2	9
45	Ultrasound-modulated microstructure of PbS film in ammonia-free chemical bath deposition. RSC Advances, 2015, 5, 10018-10025.	1.7	8
46	Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor. Nanotechnology, 2015, 26, 335606.	1.3	8
47	Study of acoustic wave propagation in micro- and nanochannels. Wave Motion, 2018, 76, 51-60.	1.0	8
48	Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology. Nanotechnology, 2017, 28, 455708.	1.3	7
49	Facile Fabrication of Hybrid Copper–Fiber Conductive Features with Enhanced Durability and Ultralow Sheet Resistance for Lowâ€Cost Highâ€Performance Paperâ€Based Electronics. Advanced Sustainable Systems, 2017, 1, 1700062.	2.7	7
50	Design and Performance of a J Band MEMS Switch. Micromachines, 2019, 10, 467.	1.4	7
51	Miniaturization of Floquet topological insulators for airborne acoustics by thermal control. Applied Physics Letters, 2019, 114, 054102.	1.5	7
52	Study of the Enzyme Activity Change due to Inkjet Printing for Biosensor Fabrication. ACS Biomaterials Science and Engineering, 2021, 7, 787-793.	2.6	7
53	Shear Mode Bulk Acoustic Viscosity Sensor for Blood Coagulation Monitoring in Oral Anticoagulant Therapy. Journal of Nanoscience and Nanotechnology, 2018, 18, 8099-8104.	0.9	6
54	Shear Mode Bulk Acoustic Resonator Based on Inclined c-Axis AlN Film for Monitoring of Human Hemostatic Parameters. Micromachines, 2018, 9, 501.	1.4	6

QIUQUAN GUO

#	Article	IF	CITATIONS
55	An Economic Method for Large-Scale Patterning and Electric Measurement of Nanowires. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 144-151.	0.1	6
56	Characterization of crossâ€linking depth for thin polymeric films using atomic force microscopy. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
57	Introducing Bioinspired Initiator into Resins for In Situ Repairing of 3D-Printed Metallic Structures. ACS Applied Materials & Interfaces, 2020, 12, 49073-49079.	4.0	5
58	Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance. Nanotechnology, 2016, 27, 355704.	1.3	4
59	Design of a relaying electroosmosis pump driven by low-voltage DC. Microsystem Technologies, 2009, 15, 1009-1015.	1.2	3
60	Particle focusing in a microchannel with acoustic metafluid. Applied Physics Letters, 2013, 103, 031901.	1.5	2
61	In situ growth of metal-sulfide film with solvent-free element-direct reaction: the case of PbS on ITO. RSC Advances, 2015, 5, 88141-88148.	1.7	2
62	Self-detached membranes with well-defined pore size, shape and distribution fabricated by underexposure photolithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	2
63	3D Coâ€Printing of 3D Electronics with a Dual Light Source Technology. Advanced Materials Technologies, 2021, 6, 2100039.	3.0	2
64	3D printing of metallic structures using dopamine-integrated photopolymer. Journal of Materials Research and Technology, 2022, 19, 1355-1366.	2.6	2
65	A centrifugal Lab-in-a-tubing platform enabling automatic point-of-care blood diagnostics. , 2011, , .		1
66	Optical and piezoelectric properties of p-type ZnO nanowires on transparent flexible substrate for energy harvesting. Proceedings of SPIE, 2014, , .	0.8	1
67	Fabrication of Polymer@Metal Core–Shell ±45° Polarization Diversity Dipoles by Mussel-Inspired Surface Chemistry on 3-D Printed Objects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 892-898.	1.4	1
68	A Highly Stable Electrode with Embedded Structure Formed through a Catalytically Oxidative Decomposition Mechanism. Advanced Materials Interfaces, 0, , 2200672.	1.9	1
69	Online Monitoring and Portable Analytical System with CMOS Sensor and Microfluidic Technology for Cell Cultivation Applications. , 2010, , .		0
70	Evaluation of intermolecular forces in a circulating system. BioSystems, 2011, 106, 130-135.	0.9	0
71	Highâ€Performance Flexible Microâ€5upercapacitors Printed on Textiles for Powering Wearable Electronics. ChemElectroChem, 2021, 8, 1540-1540.	1.7	0
72	3D Coâ€Printing of 3D Electronics with a Dual Light Source Technology (Adv. Mater. Technol. 9/2021). Advanced Materials Technologies, 2021, 6, 2170050.	3.0	0

QIUQUAN GUO

#	Article	IF	CITATIONS
73	Manipulating a Micro Stream by †Hydro Tweezers' for Integration of Nanodevices. Lecture Notes in Computer Science, 2010, , 649-658.	1.0	Ο
74	Facile and Effective Phononic Structures for Ultrasound Focusing Application. , 2014, , .		0
75	Sensing Cell Mechanics with Atomic Force Microscopy. International Journal of Biosensors & Bioelectronics, 2017, 2, .	0.2	Ο