David H Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657829/publications.pdf Version: 2024-02-01

ΟΛΛΙΟ Η ΗΛΙΙ

#	Article	IF	CITATIONS
1	The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron, 1990, 4, 61-85.	3.8	841
2	Structural Properties of the Caenorhabditis elegans Neuronal Network. PLoS Computational Biology, 2011, 7, e1001066.	1.5	701
3	Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 2019, 571, 63-71.	13.7	534
4	The Connectome of a Decision-Making Neural Network. Science, 2012, 337, 437-444.	6.0	403
5	C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 2017, 542, 367-371.	13.7	301
6	The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Current Biology, 2001, 11, 1341-1346.	1.8	293
7	Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nature Cell Biology, 2001, 3, 983-991.	4.6	280
8	A cellular and regulatory map of the cholinergic nervous system of C. elegans. ELife, 2015, 4, .	2.8	279
9	Ultrastructural Features of the Adult Hermaphrodite Gonad of Caenorhabditis elegans: Relations between the Germ Line and Soma. Developmental Biology, 1999, 212, 101-123.	0.9	278
10	Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biology, 2001, 3, 573-579.	4.6	248
11	C.Âelegans Ciliated Sensory Neurons Release Extracellular Vesicles that Function in Animal Communication. Current Biology, 2014, 24, 519-525.	1.8	196
12	KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Developmental Cell, 2016, 38, 171-185.	3.1	165
13	The Fusogen EFF-1 Controls Sculpting of Mechanosensory Dendrites. Science, 2010, 328, 1285-1288.	6.0	155
14	Lumen Morphogenesis in C. elegans Requires the Membrane-Cytoskeleton Linker erm-1. Developmental Cell, 2004, 6, 865-873.	3.1	149
15	A C. elegans CLIC-like Protein Required for Intracellular Tube Formation and Maintenance. Science, 2003, 302, 2134-2137.	6.0	146
16	Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization. Current Biology, 2012, 22, 1057-1065.	1.8	135
17	Cystic Canal Mutants in Caenorhabditis elegans Are Defective in the Apical Membrane Domain of the Renal (Excretory) Cell. Developmental Biology, 1999, 214, 227-241.	0.9	127
18	Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 2015, 526, 385-390.	13.7	110

DAVID H HALL

#	Article	IF	CITATIONS
19	Folliculin Regulates Ampk-Dependent Autophagy and Metabolic Stress Survival. PLoS Genetics, 2014, 10, e1004273.	1.5	102
20	Chapter 17 Electron Microscopy and Three-Dimensional Image Reconstruction. Methods in Cell Biology, 1995, 48, 395-436.	0.5	92
21	EFF-1 Is Sufficient to Initiate and Execute Tissue-Specific Cell Fusion in C. elegans. Current Biology, 2004, 14, 1587-1591.	1.8	91
22	Modern Electron Microscopy Methods for C. elegans. Methods in Cell Biology, 2012, 107, 93-149.	0.5	89
23	Intracellular lumen extension requires ERM-1-dependent apical membrane expansionÂandÂAQP-8-mediated flux. Nature Cell Biology, 2013, 15, 143-156.	4.6	89
24	Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult <i>Caenorhabditis elegans</i> Neurons. Journal of Neuroscience, 2016, 36, 1373-1385.	1.7	79
25	Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators of Behavior and Extracellular Vesicle Biogenesis. Current Biology, 2015, 25, 3232-3238.	1.8	75
26	Morphogenesis of theCaenorhabditis elegansMale Tail Tip. Developmental Biology, 1999, 207, 86-106.	0.9	69
27	A novel function for the <i>Caenorhabditis elegans</i> torsin OOC-5 in nucleoporin localization and nuclear import. Molecular Biology of the Cell, 2015, 26, 1752-1763.	0.9	68
28	Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology. Current Biology, 2017, 27, 968-980.	1.8	67
29	Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Current Biology, 2017, 27, 3430-3441.e6.	1.8	67
30	Two Classes of Gap Junction Channels Mediate Soma-Germline Interactions Essential for Germline Proliferation and Gametogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 1127-1153.	1.2	66
31	B-LINK: A Hemicentin, Plakin, and Integrin-Dependent Adhesion System that Links Tissues by Connecting Adjacent Basement Membranes. Developmental Cell, 2014, 31, 319-331.	3.1	65
32	Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development (Cambridge), 2012, 139, 979-990.	1.2	58
33	A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature, 2021, 591, 105-110.	13.7	58
34	Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Developmental Biology, 2009, 329, 201-211.	0.9	56
35	Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in <i>C. elegans</i> embryos. Science Advances, 2018, 4, eaat6224.	4.7	55
36	mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. Journal of Cell Biology, 2001, 154, 415-426.	2.3	54

DAVID H HALL

#	Article	IF	CITATIONS
37	Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Molecular Biology of the Cell, 2015, 26, 2823-2832.	0.9	53
38	Computer Assisted Assembly of Connectomes from Electron Micrographs: Application to Caenorhabditis elegans. PLoS ONE, 2013, 8, e54050.	1.1	50
39	Notch and Ras promote sequential steps of excretory tube development in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 3545-3555.	1.2	48
40	Immuno-EM Localization of GFP-tagged Yolk Proteins in <i>C. Elegans</i> Using Microwave Fixation. Journal of Histochemistry and Cytochemistry, 2001, 49, 949-956.	1.3	47
41	FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores. PLoS Genetics, 2015, 11, e1005520.	1.5	46
42	Ciliary Rab28 and the BBSome negatively regulate extracellular vesicle shedding. ELife, 2020, 9, .	2.8	46
43	Decreased function of survival motor neuron protein impairs endocytic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4377-86.	3.3	45
44	How does morphology relate to function in sensory arbors?. Trends in Neurosciences, 2011, 34, 443-451.	4.2	44
45	Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. PLoS Genetics, 2016, 12, e1006205.	1.5	44
46	Gap junctions in <i>C. elegans</i> : Their roles in behavior and development. Developmental Neurobiology, 2017, 77, 587-596.	1.5	40
47	Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. Journal of Cell Science, 2014, 127, 5317-30.	1.2	37
48	The Apoptotic Engulfment Machinery Regulates Axonal Degeneration in C.Âelegans Neurons. Cell Reports, 2016, 14, 1673-1683.	2.9	37
49	A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. ELife, 2020, 9, .	2.8	37
50	A putative GDP–GTP exchange factor is required for development of the excretory cell in <i>Caenorhabditis elegans</i> . EMBO Reports, 2001, 2, 530-535.	2.0	35
51	The role of the ELAV homologue EXC-7 in the developmentof the Caenorhabditis elegans excretory canals. Developmental Biology, 2003, 256, 290-301.	0.9	34
52	Developmental genetics of the C. eleganspharyngeal neurons NSML and NSMR. BMC Developmental Biology, 2008, 8, 38.	2.1	34
53	<i>Caenorhabditis elegans</i> DBL-1/BMP Regulates Lipid Accumulation via Interaction with Insulin Signaling. G3: Genes, Genomes, Genetics, 2018, 8, 343-351.	0.8	33
54	Distinct effects of tubulin isotype mutations on neurite growth in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2017, 28, 2786-2801.	0.9	29

David H Hall

#	Article	IF	CITATIONS
55	The nphp-2 and arl-13 Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in C. elegans. PLoS Genetics, 2014, 10, e1004866.	1.5	28
56	The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. ELife, 2021, 10, .	2.8	27
57	The connectome of the <scp><i>Caenorhabditis elegans</i></scp> pharynx. Journal of Comparative Neurology, 2020, 528, 2767-2784.	0.9	26
58	Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. ELife, 2020, 9, .	2.8	23
59	Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors. Developmental Cell, 2019, 48, 229-244.e4.	3.1	21
60	Cell typeâ€specific structural plasticity of the ciliary transition zone in <i>C. elegans</i> . Biology of the Cell, 2019, 111, 95-107.	0.7	21
61	Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the <i>Caenorhabditis elegans </i> intestine. Molecular Biology of the Cell, 2016, 27, 3746-3756.	0.9	20
62	Transorganogenesis and transdifferentiation in C. elegans are dependent on differentiated cell identity. Developmental Biology, 2016, 420, 136-147.	0.9	19
63	Highâ€resolution imaging of muscle attachment structures in <i>Caenorhabditis elegans</i> . Cytoskeleton, 2017, 74, 426-442.	1.0	17
64	The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation. Nature Communications, 2018, 9, 1741.	5.8	17
65	Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLoS Genetics, 2018, 14, e1007269.	1.5	17
66	Conserved role for Ataxinâ€2 in mediating endoplasmic reticulum dynamics. Traffic, 2019, 20, 436-447.	1.3	17
67	Digital development: a database of cell lineage differentiation in <i>C. elegans</i> with lineage phenotypes, cell-specific gene functions and a multiscale model. Nucleic Acids Research, 2016, 44, D781-D785.	6.5	16
68	Shigella flexneri Infection in Caenorhabditis elegans: Cytopathological Examination and Identification of Host Responses. PLoS ONE, 2014, 9, e106085.	1.1	15
69	Gap junctions and septate-like junctions between neurons of the opisthobranch molluscNavanax inermis. Journal of Neurocytology, 1983, 12, 831-846.	1.6	14
70	Nematode Neurons: Anatomy and Anatomical Methods in Caenorhabditis elegans. International Review of Neurobiology, 2005, 69, 1-35.	0.9	14
71	Novel functions for the RNA-binding protein ETR-1 in Caenorhabditis elegans reproduction and engulfment of germline apoptotic cell corpses. Developmental Biology, 2017, 429, 306-320.	0.9	14
72	Actomyosin contractility regulators stabilize the cytoplasmic bridge between the two primordial germ cells during Caenorhabditis elegans embryogenesis. Molecular Biology of the Cell, 2017, 28, 3789-3800.	0.9	14

David H Hall

#	Article	IF	CITATIONS
73	Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 637-652.	1.2	14
74	The marginal cells of the Caenorhabditis elegans pharynx scavenge cholesterol and other hydrophobic small molecules. Nature Communications, 2019, 10, 3938.	5.8	14
75	Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge), 2019, 146, .	1.2	13
76	WormAtlas Hermaphrodite Handbook - Alimentary System - Pharynx. , 0, , .		12
77	Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 1789-1806.	1.2	11
78	Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2020, 147, .	1.2	11
79	A genetic screen identifies new steps in oocyte maturation that enhance proteostasis in the immortal germ lineage. ELife, 2021, 10, .	2.8	11
80	Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genetics, 2022, 18, e1010016.	1.5	11
81	The initial expansion of the C. elegans syncytial germ line is coupled to incomplete primordial germ cell cytokinesis. Development (Cambridge), 2021, 148, .	1.2	10
82	The role of gap junctions in the C. elegans connectome. Neuroscience Letters, 2019, 695, 12-18.	1.0	9
83	Freeze-Fracture and Freeze-Etch Studies of the Nematode Caenorhabditis elegans. Annals of the New York Academy of Sciences, 1987, 494, 215-217.	1.8	7
84	WormAtlas Anatomical Methods - OTO Fixation for SEM Blockface Imaging. , 0, , .		7
85	Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis. Journal of Cell Biology, 2020, 219, .	2.3	6
86	Electron Tomography Methods for C. elegans. Methods in Molecular Biology, 2015, 1327, 141-158.	0.4	4
87	Cover Image, Volume 74, Issue 11. Cytoskeleton, 2017, 74, C1.	1.0	1
88	Teaching Nematode Anatomy Online: WormAtlas and Slidable Worm. FASEB Journal, 2008, 22, 769.10.	0.2	1
89	Announcement of WormAtlas partnership with the Journal of Nematology. Journal of Nematology, 2021, 53, 1-2.	0.4	1
90	Soma/Germline Interactions In Caenorhabditis Elegans Gonad. Microscopy and Microanalysis, 1999, 5, 1072-1073.	0.2	0

#	Article	IF	CITATIONS
91	The Nematode Caenorhabditis elegans A Model Animal "Made for Microscopy― Microscopy Today, 2004, 12, 8-13.	0.2	0
92	Cilia and Extracellular Vesicles are signaling organelles. FASEB Journal, 2015, 29, 82.1.	0.2	0