Kourosh Vahdati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657315/publications.pdf

Version: 2024-02-01

104 papers 2,011 citations

236612 25 h-index 35 g-index

106 all docs

106
docs citations

106 times ranked 1400 citing authors

#	Article	IF	CITATIONS
1	Antioxidant and Anticancer Activities of Walnut (Juglans regia L.) Protein Hydrolysates Using Different Proteases. Plant Foods for Human Nutrition, 2016, 71, 402-409.	1.4	105
2	Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Scientific Reports, 2019, 9, 6376.	1.6	64
3	Arbuscular Mycorrhiza and Plant Growth-promoting Bacteria Alleviate Drought Stress in Walnut. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1087-1092.	0.5	64
4	Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
5	Abiotic Stress - Plant Responses and Applications in Agriculture. , 2013, , .		54
6	Plant selection method for urban landscapes of semi-arid cities (a case study of Tehran). Urban Forestry and Urban Greening, 2014, 13, 450-458.	2.3	51
7	Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell, Tissue and Organ Culture, 2015, 122, 101-115.	1.2	46
8	Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. Plant Systematics and Evolution, 2015, 301, 691-699.	0.3	45
9	Correlations between Some Horticultural Traits in Walnut. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1690-1694.	0.5	45
10	Rooting and Acclimatization of In Vitro-grown Shoots from Mature Trees of Three Persian Walnut Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 324-327.	0.5	42
11	Relationships of walnut cultivars in a germplasm collection: Comparative analysis of phenotypic and molecular data. Scientia Horticulturae, 2013, 153, 124-135.	1.7	40
12	Walnut grafting success and bleeding rate as affected by different grafting methods and seedling vigour. Journal of Horticultural Science and Biotechnology, 2008, 83, 94-99.	0.9	39
13	TRADITIONS AND FOLKS FOR WALNUT GROWING AROUND THE SILK ROAD. Acta Horticulturae, 2014, , 19-24.	0.1	38
14	Preserving quality of fresh walnuts using plant extracts. LWT - Food Science and Technology, 2018, 91, 1-7.	2.5	38
15	Advances in Persian Walnut (Juglans regia L.) Breeding Strategies. , 2019, , 401-472.		37
16	Screening for Drought-tolerant Genotypes of Persian Walnuts (Juglans regia L.) During Seed Germination. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1815-1819.	0.5	37
17	Kaolin particle film alleviates adverse effects of light and heat stresses and improves nut and kernel quality in Persian walnut. Scientia Horticulturae, 2018, 239, 35-40.	1.7	34
18	Comprehensive biochemical insights into the seed germination of walnut under drought stress. Scientia Horticulturae, 2019, 250, 329-343.	1.7	34

#	Article	IF	CITATIONS
19	Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Scientia Horticulturae, 2017, 220, 114-121.	1.7	33
20	Ascorbic acid incorporated with walnut green husk extract for preserving the postharvest quality of cold storage fresh walnut kernels. Scientia Horticulturae, 2019, 245, 193-199.	1.7	33
21	Molecular Characterization of Persian Walnut Populations in Iran with Microsatellite Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1403-1406.	0.5	32
22	Foliar Application of Zinc and Boron Improves Walnut Vegetative and Reproductive Growth. HortTechnology, 2011, 21, 181-186.	0.5	31
23	Inducing drought tolerance in greenhouse grown Juglans regia by imposing controlled salt stress: The role of osmotic adjustment. Scientia Horticulturae, 2018, 239, 181-192.	1.7	30
24	Investigation of physiological components involved in low water conservation capacity of in vitro walnut plants. Scientia Horticulturae, 2017, 224, 1-7.	1.7	30
25	Rooting and Other Characteristics of a Transgenic Walnut Hybrid (Juglans hindsii × J. regia) Rootstock Expressing rolABC. Journal of the American Society for Horticultural Science, 2002, 127, 724-728.	0.5	30
26	Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. Plants, 2021, 10, 2234.	1.6	30
27	Content of different groups of phenolic compounds in microshoots of Juglans regia cultivars and studies on antioxidant activity. Acta Physiologiae Plantarum, 2013, 35, 443-450.	1.0	29
28	Estimation of Chilling and Heat Requirements of Some Persian Walnut Cultivars and Genotypes. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 697-701.	0.5	29
29	Improved Success of Persian Walnut Grafting Under Environmentally Controlled Conditions. International Journal of Fruit Science, 2007, 6, 3-12.	1.2	26
30	Osmolyte Accumulation and Sodium Compartmentation Has a Key Role in Salinity Tolerance of Pistachios Rootstocks. Agriculture (Switzerland), 2021, 11, 708.	1.4	26
31	Production of Haploids in Persian Walnut through Parthenogenesis Induced by Gamma-irradiated Pollen. Journal of the American Society for Horticultural Science, 2011, 136, 198-204.	0.5	26
32	Situation and recent trends on cultivation and breeding of Persian walnut in Iran. Scientia Horticulturae, 2020, 270, 109369.	1.7	25
33	Induction of Polyphenol Oxidase in Walnut and Its Relationship to the Pathogenic Response to Bacterial Blight. Journal of the American Society for Horticultural Science, 2016, 141, 119-124.	0.5	25
34	Functional analysis of walnut polyphenol oxidase gene (<i>JrPPO1</i>) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant Pathology, 2020, 69, 756-764.	1.2	24
35	Flowering in Persian walnut: patterns of gene expression during flower development. BMC Plant Biology, 2020, 20, 136.	1.6	24
36	Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut. PLoS ONE, 2020, 15, e0232005.	1.1	23

#	Article	IF	Citations
37	Germination, Mineral Composition, and Ion Uptake in Walnut Under Salinity Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1352-1357.	0.5	22
38	Redox rather than carbohydrate metabolism differentiates endodormant lateral buds in walnut cultivars with contrasting chilling requirements. Scientia Horticulturae, 2017, 225, 29-37.	1.7	21
39	Combining phenotype, genotype and environment to uncover genetic components underlying water use efficiency in Persian walnut. Journal of Experimental Botany, 2020, 71, 1107-1127.	2.4	21
40	Supercooling and Cold-hardiness of Acclimated and Deacclimated Buds and Stems of Persian Walnut Cultivars and Selections. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1662-1667.	0.5	21
41	DROUGHT-INDUCED ACCUMULATION OF SUGARS AND PROLINE IN RADICLE AND PLUMULE OF TOLERANT WALNUT VARIETIES DURING GERMINATION PHASE. Acta Horticulturae, 2010, , 289-296.	0.1	20
42	Kinetics Study of Protein Hydrolysis and Inhibition of Angiotensin Converting Enzyme by Peptides Hydrolysate Extracted from Walnut. International Journal of Peptide Research and Therapeutics, 2018, 24, 77-85.	0.9	20
43	Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: A case study of Iran. PLoS ONE, 2019, 14, e0218725.	1.1	20
44	<i>Agrobacterium-</i> mediated transformation of Persian walnut using <i>BADH</i> gene for salt and drought tolerance. Journal of Horticultural Science and Biotechnology, 2021, 96, 162-171.	0.9	20
45	PEROXIDASE, GUAIACOL PEROXIDASE AND ASCORBATE PEROXIDASE ACTIVITY ACCUMULATION IN LEAVES AND ROOTS OF WALNUT TREES IN RESPONSE TO DROUGHT STRESS. Acta Horticulturae, 2010, , 309-316.	0.1	19
46	Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 2020, 267, 109322.	1.7	19
47	Germination of Persian Walnut Somatic Embryos and Evaluation of their Genetic Stability by ISSR Fingerprinting and Flow Cytometry. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1576-1580.	0.5	19
48	Direct somatic embryogenesis in <i>Epipactis veratrifolia</i> , a temperate terrestrial orchid. Journal of Horticultural Science and Biotechnology, 2017, 92, 88-97.	0.9	18
49	Mechanism of seed dormancy and its relationship to bud dormancy in Persian walnut. Environmental and Experimental Botany, 2012, 75, 74-82.	2.0	17
50	Four New Persian Walnut Cultivars of Iran: Persia, Caspian, Chaldoran, and Alvand. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1162-1163.	0.5	16
51	Improvement of Ex Vitro Desiccation through Elevation of CO2 Concentration in the Atmosphere of Culture Vessels during In Vitro Growth. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1006-1012.	0.5	15
52	Flower Development in Walnut: Altering the Flowering Pattern by Gibberellic Acid Application. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46, 700-706.	0.5	15
53	Persian walnut (Juglans regia L.) grafting as influenced by different bench grafting methods and scion cultivars. Journal of Applied Horticulture, 2009, $11,56-58$.	0.3	15
54	STUDY OF THE GENETIC STRUCTURE AND GENE FLOW IN PERSIAN WALNUT (JUGLANS REGIA L.) USING SSR MARKERS. Acta Horticulturae, 2010, , 133-142.	0.1	14

#	Article	IF	CITATIONS
55	Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees - Structure and Function, 2020, 34, 1219-1232.	0.9	14
56	Heritability of Morphological Traits in Apple Early-ripening Full-sib and Half-sib Offspring and Its Potential Use for Assisted Selection. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 328-333.	0.5	14
57	Breeding of Persian walnut: Aiming to introduce late-leafing and early-harvesting varieties by targeted hybridization. Scientia Horticulturae, 2022, 295, 110885.	1.7	14
58	Variability of seedling vigour in Persian walnut as influenced by the vigour and bearing habit of the mother tree. Journal of Horticultural Science and Biotechnology, 2009, 84, 228-232.	0.9	13
59	Early bearing genotypes of walnut: a suitable material for breeding and high density orchards. Acta Horticulturae, 2016, , 101-106.	0.1	13
60	Sensory and nutritional attributes of Persian walnut kernel influenced by maturity stage, drying method, and cultivar. Journal of Food Processing and Preservation, 2021, 45, e15513.	0.9	12
61	Anti-seizure effects of walnut peptides in mouse models of induced seizure: The involvement of GABA and nitric oxide pathways. Epilepsy Research, 2021, 176, 106727.	0.8	11
62	IMPROVED MICROPROPAGATION OF WALNUT (JUGLANS REGIA L.) ON MEDIA OPTIMIZED FOR GROWTH BASED UPON MINERAL CONTENT OF WALNUT SEED. Acta Horticulturae, 2009, , 117-124.	0.1	10
63	Exploring low-chill genotypes of Persian walnut (Juglans regia L.) in west of Iran. Genetic Resources and Crop Evolution, 2021, 68, 2325-2336.	0.8	10
64	Inhibition of browning via aqueous gel solution of Aloe vera: a new method for preserving fresh fruits as a case study on fresh kernels of Persian walnut. Journal of Food Science and Technology, 2022, 59, 2784-2793.	1.4	10
65	Rooting ability of Persian walnut as affected by seedling vigour in response to stool layering. Journal of Horticultural Science and Biotechnology, 2008, 83, 334-338.	0.9	9
66	ASSESSMENT OF PHLOROGLUCINOL EFFECT ON ROOTING OF TISSUE CULTURED PERSIAN WALNUT. Acta Horticulturae, 2009, , 189-196.	0.1	9
67	Bench-grafting of Persian walnut as affected by pre- and postgrafting heating and chilling treatments. Journal of Horticultural Science and Biotechnology, 2010, 85, 48-52.	0.9	9
68	STOMATAL DENSITY AND ION LEAKAGE AS INDICATORS OF COLD HARDINESS IN WALNUT. Acta Horticulturae, 2010, , 321-324.	0.1	9
69	Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. , 2013, , .		9
70	Walnut: a potential multipurpose nut crop for reclaiming deteriorated lands and environment. Acta Horticulturae, 2018, , 95-100.	0.1	9
71	NATURAL HYRCANIAN POPULATIONS OF PERSIAN WALNUT (JUGLANS REGIA L.) IN IRAN. Acta Horticulturae, 2012, , 97-101.	0.1	8
72	Exploring Combinations of Graft Cover and Grafting Method in Commercial Walnut Cultivars. International Journal of Fruit Science, 2019, 19, 359-371.	1.2	8

#	Article	IF	CITATIONS
73	Role of kaolin on drought tolerance and nut quality of Persian walnut. Journal of the Saudi Society of Agricultural Sciences, 2021, 20, 409-416.	1.0	7
74	MATURE WALNUT GRAFTING (TOPWORKING) AS AFFECTED BY GRAFTING COVER AND SCION CULTIVAR. Acta Horticulturae, 2010, , 353-360.	0.1	6
75	DEVELOPING A PHOTOMIXOTROPHIC SYSTEM FOR MICROPROPAGATION OF PERSIAN WALNUT. Acta Horticulturae, 2014, , 181-187.	0.1	6
76	Development of improved techniques for grafting of pecan. Scientia Horticulturae, 2016, 204, 65-69.	1.7	6
77	EFFECT OF POLLEN SOURCE ON PERSIAN WALNUT CHARACTERISTICS (JUGLANS REGIA L.). Acta Horticulturae, 2010, , 99-104.	0.1	5
78	WALNUT GRAFTING SUCCESS AS AFFECTED BY DIFFERENT GRAFTING METHODS, CULTIVARS AND FORCING TREATMENTS. Acta Horticulturae, 2010, , 345-352.	0.1	5
79	COLD-HARDINESS EVALUATION OF PERSIAN WALNUT BY THERMAL ANALYSIS AND FREEZING TECHNIQUE. Acta Horticulturae, 2010, , 269-272.	0.1	5
80	BEHAVIOR OF SOME EARLY MATURE AND DWARF PERSIAN WALNUT TREES IN IRAN. Acta Horticulturae, 2014, , 189-196.	0.1	5
81	Comparing Physical and Biochemical Properties of Dried and Fresh Kernels of Persian Walnut. Erwerbs-Obstbau, 2022, 64, 455-462.	0.5	5
82	KARYOTYPE ANALYSIS OF HAPLOID PLANTS OF WALNUT (JUGLANS REGIA L.). Acta Horticulturae, 2014, , 225-228.	0.1	4
83	LONG TERM TRIALS ON TOPWORKING OF WALNUT TREES IN IRAN. Acta Horticulturae, 2014, , 197-201.	0.1	4
84	Development and extension of walnut propagation in Iran. Acta Horticulturae, 2016, , 467-474.	0.1	4
85	Bud break accompanies with the enhanced activities of hemicellulase and pectinase and the mobilization of cell wall thickenings in Persian walnut bud scales. Trees - Structure and Function, 2021, 35, 1399-1410.	0.9	4
86	Refining a protocol for somatic embryogenesis and plant regeneration of Phalaenopsis amabilis cv. Jinan from mature tissues. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2021, 45, 356-364.	0.8	4
87	ROOTING AND MULTIPLICATION ABILITY OF PERSIAN WALNUT AS INFLUENCED BY MOTHERSTOCK VIGOR AND PRECOCITY. Acta Horticulturae, 2009, , 223-228.	0.1	3
88	Rainfed fruit orchards in sloping lands: soil erosion reduction, water harvesting and fruit production. Acta Horticulturae, 2018, , 107-112.	0.1	3
89	Advances in Micropropagation of Commercial Pecan Cultivars. International Journal of Fruit Science, 2020, 20, S925-S936.	1.2	3
90	Advances in biotechnology and propagation of nut trees in Iran. BIO Web of Conferences, 2020, 25, 01003.	0.1	3

#	Article	IF	CITATIONS
91	Evaluation of Patch Budding Success in Persian Walnut Affected by Different Treatments after Budding. International Journal of Fruit Science, 2022, 22, 495-503.	1.2	3
92	INFLUENCE OF CARBOHYDRATE FORM AND NITROGEN SOURCE ON GROWTH OF PERSIAN WALNUT SHOOTS IN VITRO. Acta Horticulturae, 2001, , 537-541.	0.1	2
93	MINERAL COMPOSITION OF SOME WALNUT CULTIVARS (JUGLANS REGIA L.) FOR EVALUATION OF IONOME AND IONOMICS UNDER SALT STRESS CONDITION. Acta Horticulturae, 2009, , 293-300.	0.1	2
94	MORPHOLOGICAL AND PHYSIOLOGICAL RESPONSES TO WATER STRESS FOR SEEDLINGS OF DIFFERENT WALNUT GENOTYPES. Acta Horticulturae, 2010, , 253-262.	0.1	2
95	ENHANCEMENT OF MATURATION AND GERMINATION OF SOMATIC EMBRYOS OF PERSIAN WALNUT (JUGLANS)	ijĘŢQq1 1	l 0.784314
96	WALNUT TOLERANCE TO ABIOTIC STRESSES: APPROACHES AND PROSPECTS. Acta Horticulturae, 2014, , 399-406.	0.1	2
97	A MODEL FOR ESTIMATION OF THE POTENTIAL YIELD OF WALNUT TREES. Acta Horticulturae, 2014, , 407-412.	0.1	2
98	GENETIC STRUCTURE OF SOME WILD WALNUT POPULATIONS IN IRAN. Acta Horticulturae, 2015, , 125-128.	0.1	2
99	DEVELOPMENT OF AN EMBRYOGENIC SUSPENSION CULTURE IN CUCUMIS MELO. Acta Horticulturae, 2010, , 553-558.	0.1	2
100	Molecular and morphological evaluation of transgenic Persian walnut plants harboring Fld gene under osmotic stress condition. Molecular Biology Reports, 2022, 49, 433-441.	1.0	2
101	SOMATIC EMBRYO MATURATION AND GERMINATION OF PERSIAN WALNUT (JUGLANS REGIA L.). Acta Horticulturae, 2009, , 313-318.	0.1	1
102	Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut. Methods in Molecular Biology, 2021, 2289, 179-198.	0.4	1
103	COMPARISON OF FOUR GEOGRAPHICALLY DIVERSE NATURAL POPULATIONS OF PERSIAN WALNUT (JUGLANS) TJ	ETQq1 1 0.1	0.784314 n
104	Agrobacterium- Mediated Transformation of Tobacco Plants using Walnut Polyphenol Oxidase Gene. Journal of Plant Pathology & Microbiology, 2018, 09, .	0.3	0