Blanche P Alter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genotype-phenotype and outcome associations in patients with Fanconi anemia: the National Cancer Institute cohort. Haematologica, 2023, 108, 69-82.	1.7	10
2	Risk of cancer in heterozygous relatives of patients with Fanconi anemia. Genetics in Medicine, 2022, 24, 245-250.	1.1	5
3	Disease progression and clinical outcomes in telomere biology disorders. Blood, 2022, 139, 1807-1819.	0.6	34
4	Lipoprotein particle alterations due to androgen therapy in individuals with dyskeratosis congenita. EBioMedicine, 2022, 75, 103760.	2.7	1
5	Fanconi anaemia: A syndrome with distinct subgroups. British Journal of Haematology, 2022, 197, 467-474.	1.2	2
6	The incidence and spectrum of congenital hand differences in patients with Fanconi anaemia: analysis of 48 patients. Journal of Hand Surgery: European Volume, 2022, 47, 711-715.	0.5	3
7	Shwachman Diamond syndrome: narrow genotypic spectrum and variable clinical features. Pediatric Research, 2022, , .	1.1	5
8	Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in <i>RPL35A</i> . Haematologica, 2021, 106, 1303-1310.	1.7	12
9	Gastrointestinal Hemorrhage: A Manifestation of the Telomere Biology Disorders. Journal of Pediatrics, 2021, 230, 55-61.e4.	0.9	14
10	Cancer-Prone Inherited Bone Marrow Failure, Myelodysplastic, and Acute Myeloid Leukemia Syndromes. , 2021, , 267-314.		0
11	Gynaecological and reproductive health of women with telomere biology disorders. British Journal of Haematology, 2021, 193, 1238-1246.	1.2	5
12	The causes of Fanconi anemia in South Asia and the Middle East: A case series and review of the literature. Molecular Genetics & Genomic Medicine, 2021, 9, e1693.	0.6	2
13	Pathogenic germline <i>IKZF1</i> variant alters hematopoietic gene expression profiles. Journal of Physical Education and Sports Management, 2021, 7, a006015.	0.5	5
14	Genotype-cancer association in patients with Fanconi anemia due to pathogenic variants in FANCD1 (BRCA2) or FANCN (PALB2). Cancer Genetics, 2021, 258-259, 101-109.	0.2	7
15	Genomic-Based Machine Learning Towards Prediction of the Etiology of Bone Marrow Failure Syndromes. Blood, 2021, 138, 2182-2182.	0.6	1
16	<i>FANCA</i> Variants in Exons 27-30 Are Associated with Solid Tumors in Fanconi Anemia. Blood, 2021, 138, 2192-2192.	0.6	0
17	Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2020, 7, e238-e246.	2.2	73
18	Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Science Translational Medicine, 2020, 12, .	5.8	26

#	Article	IF	CITATIONS
19	Expansion of germline <i>RPS20</i> mutation phenotype to include Diamond–Blackfan anemia. Human Mutation, 2020, 41, 1918-1930.	1.1	13
20	Reâ€equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO Journal, 2020, 39, e103420.	3.5	42
21	Subsequent neoplasms and late mortality in children undergoing allogeneic transplantation for nonmalignant diseases. Blood Advances, 2020, 4, 2084-2094.	2.5	14
22	Frequency of heterozygous germline pathogenic variants in genes for Fanconi anemia in patients with non-BRCA1/BRCA2 breast cancer: a meta-analysis. Breast Cancer Research and Treatment, 2020, 182, 465-476.	1.1	3
23	Population Frequency of Fanconi Pathway Gene Variants and Their Association with Survival After Hematopoietic Cell Transplantation for Severe Aplastic Anemia. Biology of Blood and Marrow Transplantation, 2020, 26, 817-822.	2.0	6
24	Germline mutation of <i>MDM4</i> , a major p53 regulator, in a familial syndrome of defective telomere maintenance. Science Advances, 2020, 6, eaay3511.	4.7	25
25	Disease Progression and Outcomes in Patients with Telomere Biology Disorders. Blood, 2020, 136, 19-20.	0.6	0
26	Genotype-Phenotype Associations in Patients with Fanconi Anemia: National Cancer Institute Cohort. Blood, 2020, 136, 4-5.	0.6	2
27	Serum alpha fetoprotein levels in Fanconi anaemia. British Journal of Haematology, 2019, 184, 1074-1076.	1.2	1
28	Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Reviews, 2019, 37, 100589.	2.8	116
29	CNS manifestations in patients with telomere biology disorders. Neurology: Genetics, 2019, 5, 370.	0.9	17
30	1q21.1 deletion and a rare functional polymorphism in siblings with thrombocytopenia-absent radius–like phenotypes. Journal of Physical Education and Sports Management, 2019, 5, a004564.	0.5	4
31	Prognostic significance of pulmonary function tests in dyskeratosis congenita, a telomere biology disorder. ERJ Open Research, 2019, 5, 00209-2019.	1.1	13
32	Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis, 2019, 22, 95-102.	3.7	45
33	Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica, 2018, 103, 30-39.	1.7	236
34	Beyond the triad: Inheritance, mucocutaneous phenotype, and mortality in a cohort of patients with dyskeratosis congenita. Journal of the American Academy of Dermatology, 2018, 78, 804-806.	0.6	23
35	Pregnancy outcomes in mothers of offspring with inherited bone marrow failure syndromes. Pediatric Blood and Cancer, 2018, 65, e26757.	0.8	11
36	Prevalence of pathogenic/likely pathogenic variants in the 24 cancer genes of the ACMG Secondary Findings v2.0 list in a large cancer cohort and ethnicity-matched controls. Genome Medicine, 2018, 10, 99	3.6	15

#	Article	IF	CITATIONS
37	Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood, 2018, 132, 2205-2208.	0.6	64
38	Similar telomere attrition rates in androgen-treated and untreated patients with dyskeratosis congenita. Blood Advances, 2018, 2, 1243-1249.	2.5	30
39	Complex phenotype of dyskeratosis congenita and mood dysregulation with novel homozygous <i>RTEL1</i> and <i>TPH1</i> variants. American Journal of Medical Genetics, Part A, 2018, 176, 1432-1437.	0.7	7
40	Chromosomal Aberrations and Survival after Unrelated Donor Hematopoietic Stem Cell Transplant in Patients with Fanconi Anemia. Biology of Blood and Marrow Transplantation, 2018, 24, 2003-2008.	2.0	9
41	Phenotypes of Diamond Blackfan Anemia Patients with RPL35A Haploinsufficiency Due to 3q29 Deletion Compared with RPL35A Single Nucleotide Variants or Small Insertion/Deletions. Blood, 2018, 132, 3854-3854.	0.6	3
42	Large Genomic Deletions in Shwachman-Diamond Syndrome. Blood, 2018, 132, 2586-2586.	0.6	2
43	Cancer in Heterozygote Carriers of Fanconi Anemia Genes. Blood, 2018, 132, 3868-3868.	0.6	1
44	Myelodysplasia, Leukemia, Lymphoid Malignancies, and Other Cancers in Patients with Severe Chronic Neutropenia. Blood, 2018, 132, 16-16.	0.6	2
45	Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. European Respiratory Journal, 2017, 49, 1601640.	3.1	41
46	Current Knowledge and Priorities for Future Research in Late Effects after Hematopoietic Cell Transplantation for Inherited Bone Marrow Failure Syndromes: Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017 22, 726 725	2.0	31
47	Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. Journal of Medical Genetics, 2017, 54, 417-425.	1.5	71
48	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	5.8	87
49	Bone mineral density in patients with inherited bone marrow failure syndromes. Pediatric Research, 2017, 82, 458-464.	1.1	10
50	Late Effects Screening Guidelines after Hematopoietic Cell Transplantation for Inherited Bone Marrow Failure Syndromes: Consensus Statement From the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects After Pediatric HCT. Biology of Blood and Marrow Transplantation, 2017, 23, 1422-1428.	2.0	43
51	Progressive reticulate skin pigmentation and anonychia in a patient with bone marrow failure. Journal of the American Academy of Dermatology, 2017, 77, 1194-1198.	0.6	8
52	Pregnancies in patients with inherited bone marrow failure syndromes in the NCI cohort. Blood, 2017, 130, 1674-1676.	0.6	15
53	Inherited bone marrow failure syndromes: considerations pre- and posttransplant. Blood, 2017, 130, 2257-2264.	0.6	57
54	The Second Pediatric Blood and Marrow Transplant Consortium International Consensus Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Defining the Unique Late Effects of Children Undergoing Hematopoietic Cell Transplantation for Immune Deficiencies, Inherited Marrow Failure Disorders, and Hemoglobinopathies. Biology of Blood and Marrow Transplantation, 2017, 23, 24-29.	2.0	33

#	Article	IF	CITATIONS
55	Heritable cancer: Rounding up the not so usual suspects. Pediatric Blood and Cancer, 2017, 64, 219-220.	0.8	2
56	Inherited bone marrow failure syndromes: considerations pre- and posttransplant. Hematology American Society of Hematology Education Program, 2017, 2017, 88-95.	0.9	36
57	Correlation of Leukocyte Telomere Length Measurement Methods in Patients with Dyskeratosis Congenita and in Their Unaffected Relatives. International Journal of Molecular Sciences, 2017, 18, 1765.	1.8	42
58	Preemptive Bone Marrow Transplantation and Event-Free Survival in Fanconi Anemia. Biology of Blood and Marrow Transplantation, 2016, 22, 1888-1892.	2.0	22
59	Thinking of VACTERLâ€H? Rule out Fanconi Anemia according to PHENOS. American Journal of Medical Genetics, Part A, 2016, 170, 1520-1524.	0.7	38
60	Pituitary abnormalities in patients with Fanconi anaemia. Clinical Endocrinology, 2016, 84, 307-309.	1.2	0
61	Hoyeraal-Hreidarsson Syndrome due to PARN Mutations: Fourteen Years of Follow-Up. Pediatric Neurology, 2016, 56, 62-68.e1.	1.0	29
62	Research participant interest in primary, secondary, and incidental genomic findings. Genetics in Medicine, 2016, 18, 1218-1225.	1.1	24
63	The limitations of qPCR telomere length measurement in diagnosing dyskeratosis congenita. Molecular Genetics & Genomic Medicine, 2016, 4, 475-479.	0.6	20
64	Investigation of chromosome X inactivation and clinical phenotypes in female carriers of DKC1 mutations. American Journal of Hematology, 2016, 91, 1215-1220.	2.0	22
65	Otologic manifestations of Fanconi anemia and other inherited bone marrow failure syndromes. Pediatric Blood and Cancer, 2016, 63, 2139-2145.	0.8	10
66	In reference to <i>Natural history and management of fanconi anemia patients with head and neck cancer: A 10â€year followâ€up</i> . Laryngoscope, 2016, 126, E229.	1.1	3
67	Novel <i>FANCI</i> mutations in Fanconi anemia with VACTERL association. American Journal of Medical Genetics, Part A, 2016, 170, 386-391.	0.7	25
68	Cancer in the National Cancer Institute Inherited Bone Marrow Failure Syndrome Cohort after 15 Years of Follow-up. Blood, 2016, 128, 334-334.	0.6	2
69	Germline Mutations in Patients Receiving Unrelated Donor Hematopoietic Cell Transplant for Severe Aplastic Anemia. Blood, 2016, 128, 68-68.	0.6	Ο
70	The use of haematopoietic stem cell transplantation in Fanconi anaemia patients: a survey of decision making among families in the US and Canada. Health Expectations, 2015, 18, 929-941.	1.1	7
71	Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood, 2015, 125, 793-802.	0.6	31
72	Telomere length in inherited bone marrow failure syndromes. Haematologica, 2015, 100, 49-54.	1.7	63

#	Article	IF	CITATIONS
73	Immune status of patients with inherited bone marrow failure syndromes. American Journal of Hematology, 2015, 90, 702-708.	2.0	34
74	Comment on: "The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes". Haematologica, 2015, 100, e378-e378.	1.7	1
75	Reduced Serum Levels of Anti-Müllerian Hormone in Females With Inherited Bone Marrow Failure Syndromes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E197-E203.	1.8	14
76	Genetic Information‣eeking Behaviors and Knowledge among Family Members and Patients with Inherited Bone Marrow Failure Syndromes. Journal of Genetic Counseling, 2015, 24, 760-770.	0.9	15
77	Preemptive Bone Marrow Transplantation for FANCD1/BRCA2. Biology of Blood and Marrow Transplantation, 2015, 21, 1796-1801.	2.0	14
78	Endocrine Disorders in Fanconi Anemia: Recommendations for Screening and Treatment. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 803-811.	1.8	76
79	Second Allogeneic Hematopoietic Cell Transplantation for Patients with Fanconi Anemia and Bone Marrow Failure. Biology of Blood and Marrow Transplantation, 2015, 21, 1790-1795.	2.0	9
80	Novel Fanci Mutations in Fanconi Anemia with Vacterl Association. Blood, 2015, 126, 4780-4780.	0.6	1
81	Dubowitz Syndrome Is a Complex Comprised of Multiple, Genetically Distinct and Phenotypically Overlapping Disorders. PLoS ONE, 2014, 9, e98686.	1.1	29
82	Comparison of Chromosome Breakage in Non-Mosaic and Mosaic Patients with Fanconi Anemia, Relatives, and Patients with Other Inherited Bone Marrow Failure Syndromes. Cytogenetic and Genome Research, 2014, 144, 15-27.	0.6	47
83	Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes and Development, 2014, 28, 2090-2102.	2.7	106
84	Anti-Müllerian Hormone Deficiency in Females With Fanconi Anemia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1608-1614.	1.8	29
85	Response to androgen therapy in patients with dyskeratosis congenita. British Journal of Haematology, 2014, 165, 349-357.	1.2	89
86	Fanconi anemia and the development ofÂleukemia. Best Practice and Research in Clinical Haematology, 2014, 27, 214-221.	0.7	166
87	Antibody response to human papillomavirus vaccine in subjects with inherited bone marrow failure syndromes. Vaccine, 2014, 32, 1169-1173.	1.7	13
88	Pearson syndrome in a Diamond-Blackfan anemia cohort. Blood, 2014, 124, 312-313.	0.6	9
89	Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 2014, 124, 24-32.	0.6	79
90	Sources of Uncertainty and Their Association with Medical Decision Making: Exploring Mechanisms in Fanconi Anemia. Annals of Behavioral Medicine, 2013, 46, 204-216.	1.7	29

#	Article	IF	CITATIONS
91	Squamous cell carcinomas in patients with Fanconi anemia and dyskeratosis congenita: A search for human papillomavirus. International Journal of Cancer, 2013, 133, 1513-1515.	2.3	63
92	Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Dyskeratosis Congenita. Biology of Blood and Marrow Transplantation, 2013, 19, 1238-1243.	2.0	108
93	Erythrocyte adenosine deaminase: diagnostic value for Diamondâ€Blackfan anaemia. British Journal of Haematology, 2013, 160, 547-554.	1.2	76
94	Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Human Genetics, 2013, 132, 473-480.	1.8	198
95	A Recessive Founder Mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, Underlies Severe Immunodeficiency and Features of Hoyeraal Hreidarsson Syndrome. PLoS Genetics, 2013, 9, e1003695.	1.5	106
96	Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. British Journal of Haematology, 2013, 162, 542-546.	1.2	21
97	Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. British Journal of Haematology, 2013, 163, 81-92.	1.2	15
98	The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita. Human Molecular Genetics, 2012, 21, 721-729.	1.4	26
99	Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica, 2012, 97, 353-359.	1.7	194
100	Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood, 2012, 119, 3815-3819.	0.6	263
101	Neuropsychiatric Conditions Among Patients with Dyskeratosis Congenita: A Link with Telomere Biology?. Psychosomatics, 2012, 53, 230-235.	2.5	26
102	Patients with Fanconi anemia and AML have different cytogenetic clones than de novo cases of AML. Pediatric Blood and Cancer, 2012, 59, 922-924.	0.8	30
103	The relationship between DNA methylation and telomere length in dyskeratosis congenita. Aging Cell, 2012, 11, 24-28.	3.0	28
104	Estimation of the prevalence of Fanconi anemia among patients with de novo acute myelogenous leukemia who have poor recovery from chemotherapy. Leukemia Research, 2012, 36, 29-31.	0.4	12
105	Response to Androgen Therapy and Side Effects in Patients with Dyskeratosis Congenita Blood, 2012, 120, 2361-2361.	0.6	1
106	Bone Marrow Cellular Composition and Inflammatory Cytokine Expression in Patients with Inherited Bone Marrow Failure Syndromes. Blood, 2012, 120, 4401-4401.	0.6	0
107	Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes and Development, 2011, 25, 11-16.	2.7	213
108	Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474, 399-402.	13.7	220

#	Article	IF	CITATIONS
109	A comprehensive functional characterization of BRCA2 variants associated with Fanconi anemia using mouse ES cell–based assay. Blood, 2011, 118, 2430-2442.	0.6	53
110	Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: Case Report and systematic literature review. BMC Blood Disorders, 2011, 11, 3.	0.9	56
111	Neutrophil functions in patients with inherited bone marrow failure syndromes. Pediatric Blood and Cancer, 2011, 57, 306-309.	0.8	7
112	How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. American Journal of Medical Genetics, Part A, 2011, 155, 1877-1883.	0.7	95
113	Sequence analysis of the shelterin telomere protection complex genes in dyskeratosis congenita. Journal of Medical Genetics, 2011, 48, 285-288.	1.5	12
114	Impact of G-CSF on Outcomes of Pregnancy in Women with Severe Chronic Neutropenia. Blood, 2011, 118, 4786-4786.	0.6	1
115	Frequency and natural history of inherited bone marrow failure syndromes: the Israeli Inherited Bone Marrow Failure Registry. Haematologica, 2010, 95, 1300-1307.	1.7	57
116	Pathophysiology and management of inherited bone marrow failure syndromes. Blood Reviews, 2010, 24, 101-122.	2.8	432
117	Wilms tumor, AML, and medulloblastoma in a child with cancer prone syndrome of total premature chromatid separation and Fanconi anemia. Pediatric Blood and Cancer, 2010, 54, 488-488.	0.8	5
118	Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. British Journal of Haematology, 2010, 150, 179-188.	1.2	272
119	Stable longâ€ŧerm risk of leukaemia in patients with severe congenital neutropenia maintained on G SF therapy. British Journal of Haematology, 2010, 150, 196-199.	1.2	211
120	Ocular and Orbital Manifestations of the Inherited Bone Marrow Failure Syndromes: Fanconi Anemia and Dyskeratosis Congenita. Ophthalmology, 2010, 117, 615-622.	2.5	72
121	Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging, 2010, 2, 867-874.	1.4	120
122	How Rare Is Rare? Carrier Frequencies for Fanconi Anemia In the United States and Israel. Blood, 2010, 116, 2229-2229.	0.6	3
123	Dyskeratosis congenita: The first NIH clinical research workshop. Pediatric Blood and Cancer, 2009, 53, 520-523.	0.8	66
124	Dyskeratosis Congenita. Hematology/Oncology Clinics of North America, 2009, 23, 215-231.	0.9	195
125	PROLIFERATIVE RETINOPATHY AS A COMPLICATION OF DYSKERATOSIS CONGENITA. Retinal Cases and Brief Reports, 2009, 3, 259-262.	0.3	15
126	Cancer in dyskeratosis congenita. Blood, 2009, 113, 6549-6557.	0.6	413

#	Article	IF	CITATIONS
127	Correlation of Telomere Length in Blood, Buccal Cells, and Fibroblasts From Patients with Inherited Bone Marrow Failure Syndromes Blood, 2009, 114, 1083-1083.	0.6	4
128	Stable Long-Term Risk of Leukemia in Patients with Severe Congenital Neutropenia Maintained On G-CSF Therapy Blood, 2009, 114, 3206-3206.	0.6	2
129	Stem Cell Transplantation for Fanconi Anemia: A Survey of Decision-Making among Families in the US and Canada Blood, 2009, 114, 3207-3207.	0.6	Ο
130	Diagnosis of Fanconi Anemia in An Asymptomatic Adult with Mosaicism and a Molecular Explanation Blood, 2009, 114, 4213-4213.	0.6	0
131	Immunosuppressive Therapy and Future Response to Androgens or Survival After Hematopoietic Stem Cell Transplantation in Fanconi Anemia Blood, 2009, 114, 1082-1082.	0.6	Ο
132	Bone Marrow Fibrosis in Patients with Inherited Bone Marrow Failure Syndromes Blood, 2009, 114, 3192-3192.	0.6	0
133	All in the family: Disclosure of "unwanted―information to an adolescent to benefit a relative. American Journal of Medical Genetics, Part A, 2008, 146A, 2719-2724.	0.7	9
134	Bone marrow cell cycle markers in inherited bone marrow failure syndromes. Leukemia Research, 2008, 32, 1793-1799.	0.4	15
135	TINF2, a Component of the Shelterin Telomere Protection Complex, Is Mutated in Dyskeratosis Congenita. American Journal of Human Genetics, 2008, 82, 501-509.	2.6	368
136	Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. British Journal of Haematology, 2008, 142, 859-876.	1.2	408
137	The role of telomere biology in bone marrow failure and other disorders. Mechanisms of Ageing and Development, 2008, 129, 35-47.	2.2	64
138	Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica, 2008, 93, 511-517.	1.7	182
139	Cancer Epidemiology in the National Cancer Institute Inherited Bone Marrow Failure Syndromes Cohort: First Report. Blood, 2008, 112, 40-40.	0.6	2
140	Risk for Septic Death in Severe Congenital Neutropenia. Blood, 2008, 112, 3548-3548.	0.6	0
141	Israeli Fanconi Anemia Registry. Blood, 2008, 112, 4125-4125.	0.6	0
142	Very Short Telomeres Are Characteristic of Dyskeratosis Congenita and Not Other Inherited Bone Marrow Failure Syndromes. Blood, 2008, 112, 1044-1044.	0.6	0
143	Frequency and Natural History of Inherited Bone Marrow Failure Syndromes: The Israeli Inherited Bone Marrow Failure Registry. Blood, 2008, 112, 1045-1045.	0.6	0
144	The First Single Center Phenotypic Comparison of Fanconi Anemia, Dyskeratosis Congenita, Diamond-Blackfan Anemia, and Shwachman- Diamond Syndrome: The NCI IBMFS Cohort Blood, 2008, 112, 2043-2043.	0.6	0

#	Article	IF	CITATIONS
145	Endocrine Abnormalities in Patients with Fanconi Anemia. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2624-2631.	1.8	120
146	CURRENT DIAGNOSIS OF INHERITED BONE MARROW FAILURE SYNDROMES. Pediatric Hematology and Oncology, 2007, 24, 87-99.	0.3	27
147	Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood, 2007, 110, 1439-1447.	0.6	296
148	Diagnosis, Genetics, and Management of Inherited Bone Marrow Failure Syndromes. Hematology American Society of Hematology Education Program, 2007, 2007, 29-39.	0.9	174
149	Splenic peliosis and rupture in patients with dyskeratosis congenita on androgens and granulocyte colonyâ€stimulating factor. British Journal of Haematology, 2007, 138, 815-817.	1.2	42
150	Cyclic Neutropenia Is Not Associated with Transformation to MDS and AML Blood, 2007, 110, 3306-3306.	0.6	0
151	Central Nervous System Abnormalities in Dyskeratosis Congenita and Fanconi Anemia: Correlation with Clinical Phenotype and Aplastic Anemia Blood, 2007, 110, 1682-1682.	0.6	0
152	Predictors of Transformation to Myelodysplasia/Acute Myelogenous Leukemia (MDS/AML) in Severe Congenital Neutropenia (SCN) Blood, 2007, 110, 3307-3307.	0.6	0
153	Cancer Survivorship—Genetic Susceptibility and Second Primary Cancers: Research Strategies and Recommendations. Journal of the National Cancer Institute, 2006, 98, 15-25.	3.0	295
154	Fanconi Anemia. Seminars in Hematology, 2006, 43, 147-156.	1.8	174
155	Intensive Immunosuppression Therapy for Aplastic Anemia Associated with Dyskeratosis Congenita. International Journal of Hematology, 2006, 83, 275-276.	0.7	32
156	Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells, Molecules, and Diseases, 2006, 37, 134-136.	0.6	25
157	Thrombocytopenia, multiple mucosal squamous cell carcinomas, and dyspigmentation. Journal of the American Academy of Dermatology, 2006, 54, 1056-1059.	0.6	2
158	The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood, 2006, 107, 4628-4635.	0.6	394
159	The association between FANCD1/BRCA2 mutations and leukaemia British Journal of Haematology, 2006, 133, 446-448.	1.2	12
160	Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. Journal of Medical Genetics, 2006, 44, 1-9.	1.5	215
161	Risk of head and neck squamous cell cancer and death in patients with Fanconi anemia who did and did not receive transplants. Blood, 2005, 105, 67-73.	0.6	244
162	Fanconi's Anemia, transplantation, and cancer. Pediatric Transplantation, 2005, 9, 81-86.	0.5	38

#	Article	IF	CITATIONS
163	Fanconi Anemia. JAMA Otolaryngology, 2005, 131, 635.	1.5	55
164	Bone Marrow Failure: A Child Is Not Just a Small Adult (But an Adult Can Have a Childhood Disease). Hematology American Society of Hematology Education Program, 2005, 2005, 96-103.	0.9	16
165	The Incidence of Leukemia and Mortality from Sepsis in Patients with Severe Congenital Neutropenia Receiving Long-Term G-CSF Therapy Blood, 2005, 106, 669-669.	0.6	2
166	Cancer as the Initial Presentation in Patients with Fanconi's Anemia Blood, 2005, 106, 3745-3745.	0.6	0
167	Growth hormone and the risk of malignancy. Pediatric Blood and Cancer, 2004, 43, 534-535.	0.8	5
168	Androgens and liver tumors: Fanconi's anemia and non-Fanconi's conditions. American Journal of Hematology, 2004, 77, 257-267.	2.0	207
169	Individualized risks of first adverse events in patients with Fanconi anemia. Blood, 2004, 104, 350-355.	0.6	84
170	Cancer in Fanconi anemia, 1927-2001. Cancer, 2003, 97, 425-440.	2.0	387
171	The CCC System: Is It Really the Answer to Pediatric MDS?. Journal of Pediatric Hematology/Oncology, 2003, 25, 426-427.	0.3	5
172	Cancer in Fanconi anemia. Blood, 2003, 101, 2072-2072.	0.6	147
173	Cancer incidence in persons with Fanconi anemia. Blood, 2003, 101, 822-826.	0.6	430
174	Radiosensitivity in Fanconi's anemia patients. Radiotherapy and Oncology, 2002, 62, 345-347.	0.3	105
175	Bone marrow failure syndromes in children. Pediatric Clinics of North America, 2002, 49, 973-988.	0.9	54
176	Shwachman-Diamond syndrome: Report from an international conference. Journal of Pediatrics, 2002, 141, 266-270.	0.9	81
177	p53 Protein Overexpression in Bone Marrow Biopsies of Patients With Shwachman-Diamond Syndrome Has a Prevalence Similar to That of Patients With Refractory Anemia. Archives of Pathology and Laboratory Medicine, 2002, 126, 452-455.	1.2	51
178	Modern Review of Congenital Hypoplastic Anemia. The American Journal of Pediatric Hematology/oncology, 2001, 23, 383-384.	1.3	0
179	Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Human Molecular Genetics, 2001, 10, 371-382.	1.4	151
180	Fanconi Anemia. Cancer Genetics and Cytogenetics, 2000, 117, 125-131.	1.0	99

#	Article	IF	CITATIONS
181	Clinical features and diagnosis of Fanconi's anemia. , 1999, , 319-337.		Ο
182	Pregnancy in bone marrow failure syndromes: Diamond-Blackfan anaemia and Shwachman-Diamond syndrome. British Journal of Haematology, 1999, 107, 49-54.	1.2	26
183	Modulation of macrocytosis in aplastic anemia. , 1998, 57, 92-92.		1
184	Dyskeratosis congenita: Nails and hands. , 1998, 58, 298-298.		3
185	Treatment of dyskeratosis congenita with Granulocyte Colonyâ€Stimulating Factor and Erythropoietin. British Journal of Haematology, 1997, 97, 309-311.	1.2	29
186	Aplastic Anemia, Pediatric Aspects. Oncologist, 1996, 1, 361-366.	1.9	16
187	Successful treatment of diamond-blackfan anemia with interleukin 3. Stem Cells, 1996, 11, 123-130.	1.4	3
188	Fanconi's anemia and malignancies. , 1996, 53, 99-110.		225
189	Fanconi's anemia and malignancies. American Journal of Hematology, 1996, 53, 99-110.	2.0	5
190	FANCONI'S ANAEMIA AND ITS VARIABILITY. British Journal of Haematology, 1994, 86, 895-896.	1.2	0
191	Clonal chromosomal abnormalities in Fanconi's anaemia: what do they really mean?. British Journal of Haematology, 1993, 85, 627-630.	1.2	36
192	Lack of effect of corticosteroids in W/W ^v and Sl/Sl ^d mice: These strains are not a model for steroidâ€responsive Diamondâ€Blackfan anemia. European Journal of Haematology, 1993, 50, 275-278.	1.1	6
193	Erythropoiesis is Distinct at Each Stage of Ontogeny. Pediatric Research, 1992, 31, 170-175.	1.1	27
194	Dyskeratosis Congenita. Journal of Pediatric Hematology/Oncology, 1992, 14, 297-304.	0.3	82
195	Sickle and Thalassemic Erythroid Progenitor Cells are Different from Normal. Hemoglobin, 1992, 16, 447-467.	0.4	12
196	Fanconi anemia in blacks. American Journal of Medical Genetics Part A, 1992, 42, 393-393.	2.4	1
197	Fanconi's anaemia and pregnancy. British Journal of Haematology, 1991, 77, 410-418.	1.2	78
198	JUVENILE CHRONIC MYELOGENOUS LEUKAEMIA: THE ONLY EXAMPLE OF TRULY FETAL (NOT FETAL-LIKE) ERYTHROPOIESIS. British Journal of Haematology, 1990, 76, 307-310.	1.2	35

#	Article	IF	CITATIONS
199	Prenatal Diagnosis: General Introduction, Methodology, and Review. Hemoglobin, 1988, 12, 763-772.	0.4	10
200	Prenatal Diagnosis of Hemoglobinopathies: A Potential Application of High Performance Liquid Chromatography. Hemoglobin, 1987, 11, 341-352.	0.4	12
201	Bone marrow transplantation in two multiply transfused patients with thalassaemia major. British Journal of Haematology, 1986, 63, 445-456.	1.2	5
202	The effect of hemin in vitro and in vivo on human erythroid progenitor cells. International Journal of Cell Cloning, 1986, 4, 432-446.	1.6	2
203	The effect of hemin in vitro and in vivo on human erythroid progenitor cells. International Journal of Cell Cloning, 1986, 4, 432-446.	1.6	12
204	HAEMOGLOBIN SYNTHESIS IN ERYTHROID CULTURE. British Journal of Haematology, 1982, 51, 661-662.	1.2	0
205	Globin Chain Electrophoresis for Prenatal Diagnosis of β Thalassemia. Hemoglobin, 1981, 5, 357-370.	0.4	27
206	PRENATAL DIAGNOSIS OF HEMOGLOBINOPATHIES: THE NEW ENGLAND APPROACH. Annals of the New York Academy of Sciences, 1980, 344, 151-164.	1.8	13
207	Bone marrow failure syndromes. , 0, , 47-64.		4