
Mar Zalduendo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. Journal of Orthopaedic Research, 2005, 23, 281-286.	1.2	419
2	Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology, 2007, 46, 1769-1772.	0.9	247
3	Fibroblastic response to treatment with different preparations rich in growth factors. Cell Proliferation, 2009, 42, 162-170.	2.4	221
4	Autologous fibrin matrices: A potential source of biological mediators that modulate tendon cell activities. Journal of Biomedical Materials Research - Part A, 2006, 77A, 285-293.	2.1	160
5	Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties. PLoS ONE, 2015, 10, e0121713.	1.1	116
6	Reciprocal Actions of Platelet-Secreted TGF-??1 on the Production of VEGF and HGF by Human Tendon Cells. Plastic and Reconstructive Surgery, 2007, 119, 950-959.	0.7	110
7	Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy, 2018, 20, 479-498.	0.3	98
8	Morphogen and proinflammatory cytokine release kinetics from PRGFâ€Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion. Journal of Biomedical Materials Research - Part A, 2015, 103, 1011-1020.	2.1	91
9	Plasma Rich in Growth Factors Promotes Bone Tissue Regeneration by Stimulating Proliferation, Migration, and Autocrine Secretion in Primary Human Osteoblasts. Journal of Periodontology, 2013, 84, 1180-1190.	1.7	89
10	Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1657-1665.	2.3	68
11	Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors. Annals of Anatomy, 2013, 195, 461-466.	1.0	67
12	Implementation of a more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration. Platelets, 2016, 27, 459-466.	1.1	51
13	Relationship between Investigative Biomarkers and Radiographic Grading in Patients with Knee Osteoarthritis. International Journal of Rheumatology, 2009, 2009, 1-4.	0.9	31
14	The inclusion of leukocytes into platelet rich plasma reduces scaffold stability and hinders extracellular matrix remodelling Annals of Anatomy, 2022, 240, 151853.	1.0	17
15	The effect of different drugs on the preparation and biological outcomes of plasma rich in growth factors. Annals of Anatomy, 2014, 196, 423-429.	1.0	16
16	Effects of anti-aggregant, anti-inflammatory and anti-coagulant drug consumption on the preparation and therapeutic potential of plasma rich in growth factors (PRGF). Growth Factors, 2015, 33, 57-64.	0.5	16
17	PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells. Clinical Oral Investigations, 2016, 20, 513-521.	1.4	16
18	Personalized plasma-based medicine to treat age-related diseases. Materials Science and Engineering C, 2017, 74, 459-464.	3.8	16

MAR ZALDUENDO

#	Article	IF	CITATIONS
19	Imprinting of mammalian male gametes is gene specific and does not occur at a single stage of differentiation. International Journal of Developmental Biology, 2008, 52, 1105-1111.	0.3	14
20	Progress in the Use of Autologous Regenerative Platelet-based Therapies in Implant Dentistry. Current Pharmaceutical Biotechnology, 2016, 17, 402-413.	0.9	14
21	Autologous plasma rich in growth factors technology for isolation and <i>ex vivo</i> expansion of human dental pulp stem cells for clinical translation. Regenerative Medicine, 2019, 14, 97-111.	0.8	11
22	Composite alginate-gelatin hydrogels incorporating PRGF enhance human dental pulp cell adhesion, chemotaxis and proliferation. International Journal of Pharmaceutics, 2022, 617, 121631.	2.6	10
23	The Effectiveness of Platelet-Rich Plasma as a Carrier of Stem Cells in Tissue Regeneration: A Systematic Review of Pre-Clinical Research. Cells Tissues Organs, 2021, 210, 339-350.	1.3	9
24	Structural and functional preservation of specific sequences of DNA and mRNA in apoptotic bodies from ES cells. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 417-428.	2.2	8
25	Balancing microbial and mammalian cell functions on calcium ionâ€modified implant surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 421-432.	1.6	6
26	The influence of sodium citrate on the characteristics and biological activity of plasma rich in growth factors. Regenerative Medicine, 2020, 15, 2181-2192.	0.8	6
27	Platelet-Rich Plasma as an Alternative to Xenogeneic Sera in Cell-Based Therapies: A Need for Standardization. International Journal of Molecular Sciences, 2022, 23, 6552.	1.8	6
28	Ozone dosing alters the biological potential and therapeutic outcomes of plasma rich in growth factors. Journal of Periodontal Research, 2015, 50, 240-247.	1.4	5
29	The influence of alveolar bone healing degree on its potential as a source of human alveolar bone-derived cells. Annals of Anatomy, 2020, 232, 151578.	1.0	5
30	Longâ€ŧerm stability of a novel plateletâ€rich plasma–based topical serum for cutaneous applications. Journal of Cosmetic Dermatology, 2021, 20, 854-861.	0.8	3
31	Chromatin Structure and U2AF1-RS1 Gene Expression in Embryonic Stem Cells following RA-Induced Apoptosis. Scientific World Journal, The, 2001, 1, 37-37.	0.8	0
32	Pluripotent Stem Cell Epigenetics During Development and Cancer. , 2009, , 83-100.		0