Pauliina Penttinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1656946/publications.pdf

Version: 2024-02-01

49 1,922 papers citations

279701 265120 42
h-index g-index

51 51 docs citations

51 times ranked 2854 citing authors

#	Article	IF	CITATIONS
1	Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications, 2014, 5, 3195.	5.8	248
2	Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environment International, 2019, 124, 482-492.	4.8	191
3	Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications, 2020, 11, 1147.	5.8	188
4	From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 2022, 375, eabe8244.	6.0	129
5	Diet-Derived Polyphenol Metabolite Enterolactone Is a Tissue-Specific Estrogen Receptor Activator. Endocrinology, 2007, 148, 4875-4886.	1.4	126
6	Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nature Medicine, 2015, 21, 1116-1118.	15.2	113
7	In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Human Reproduction Update, 2019, 25, 777-801.	5 . 2	56
8	The Hydroxysteroid ($17\hat{l}^2$) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology, 2016, 157, 3719-3730.	1.4	43
9	Cadmium-Induced Effects on Cellular Signaling Pathways in the Liver of Transgenic Estrogen Reporter Mice. Toxicological Sciences, 2012, 127, 66-75.	1.4	41
10	Human embryonic stem cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 2-12.	1.4	38
11	Novel Hydroxysteroid $(17\hat{l}^2)$ Dehydrogenase 1 Inhibitors Reverse Estrogen-Induced Endometrial Hyperplasia in Transgenic Mice. American Journal of Pathology, 2010, 176, 1443-1451.	1.9	37
12	Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials, 2014, 35, 8496-8502.	5.7	37
13	A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. Toxicological Sciences, 2021, 184, 183-190.	1.4	36
14	Maternal flaxseed diet during pregnancy or lactation increases female rat offspring's susceptibility to carcinogen-induced mammary tumorigenesis. Reproductive Toxicology, 2007, 23, 397-406.	1.3	35
15	Biosensors Paving the Way to Understanding the Interaction between Cadmium and the Estrogen Receptor Alpha. PLoS ONE, 2011, 6, e23048.	1.1	35
16	Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Scientific Reports, 2019, 9, 6424.	1.6	35
17	A Single Dose of Enterolactone Activates Estrogen Signaling and Regulates Expression of Circadian Clock Genes in Mice. Journal of Nutrition, 2011, 141, 1583-1589.	1.3	33
18	Rapid Fluorescent Detection of (Anti)androgens with <i>spiggin-gfp</i> Medaka. Environmental Science &	4.6	31

#	Article	IF	CITATIONS
19	Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reproductive Toxicology, 2019, 87, 32-41.	1.3	29
20	Safeguarding Female Reproductive Health Against Endocrine Disrupting Chemicalsâ€"The FREIA Project. International Journal of Molecular Sciences, 2020, 21, 3215.	1.8	28
21	Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environment International, 2021, 155, 106589.	4.8	28
22	Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. Chemosphere, 2021, 283, 131125.	4.2	27
23	Cadmium at nanomolar concentrations activates Raf–MEK–ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chemico-Biological Interactions, 2015, 231, 44-52.	1.7	26
24	Persistent environmental endocrine-disrupting chemicals in ovarian follicular fluid and <i>inÂvitro</i> fertilization treatment outcome in women. Upsala Journal of Medical Sciences, 2020, 125, 85-94.	0.4	26
25	Impact of first-line cancer treatment on the follicle quality in cryopreserved ovarian samples from girls and young women. Human Reproduction, 2019, 34, 1674-1685.	0.4	25
26	Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies. Environmental Research, 2022, 208, 112626.	3.7	25
27	Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Archives of Toxicology, 2020, 94, 3359-3379.	1.9	24
28	Resveratrol supports and alpha-naphthoflavone disrupts growth of human ovarian follicles in an in vitro tissue culture model. Toxicology and Applied Pharmacology, 2018, 338, 73-82.	1.3	23
29	Phthalates, ovarian function and fertility in adulthood. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101552.	2.2	22
30	Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development. Scientific Reports, 2019, 9, 8411.	1.6	16
31	In vivo and in vitro postovulatory aging: whenÂtime worksÂagainst oocyte quality?. Journal of Assisted Reproduction and Genetics, 2022, 39, 905-918.	1.2	16
32	Human induced pluripotent stem cells from two azoospermic patients with Klinefelter syndrome show similar X chromosome inactivation behavior to female pluripotent stem cells. Human Reproduction, 2019, 34, 2297-2310.	0.4	15
33	Persistent organic pollutants, pre-pregnancy use of combined oral contraceptives, age, and time-to-pregnancy in the SELMA cohort. Environmental Health, 2020, 19, 67.	1.7	15
34	Fertility Preservation for Prepubertal Patients at Risk of Infertility: Present Status and Future Perspectives. Hormone Research in Paediatrics, 2020, 93, 599-608.	0.8	15
35	Perfluorooctane sulfonate (PFOS) exposure of bovine oocytes affects early embryonic development at human-relevant levels in an in vitro model. Toxicology, 2021, 464, 153028.	2.0	15
36	Inhibition of COX-2 Aggravates Neutrophil Migration and Pneumocyte Apoptosis in Surfactant-Depleted Rat Lungs. Pediatric Research, 2006, 59, 412-417.	1.1	14

#	Article	IF	CITATIONS
37	Estrogen-like effects of diet-derived cadmium differ from those of orally administered CdCl2 in the ERE-luc estrogen reporter mouse model. Toxicology Letters, 2011, 202, 75-84.	0.4	14
38	Culture of human ovarian tissue in xeno-free conditions using laminin components of the human ovarian extracellular matrix. Journal of Assisted Reproduction and Genetics, 2020, 37, 2137-2150.	1.2	14
39	Suspect and non-target screening of ovarian follicular fluid and serum – identification of anthropogenic chemicals and investigation of their association to fertility. Environmental Sciences: Processes and Impacts, 2021, 23, 1578-1588.	1.7	10
40	Follicular hormone dynamics during the midcycle surge of gonadotropins in women undergoing fertility treatment. Molecular Human Reproduction, 2020, 26, 256-268.	1.3	8
41	Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1â€driven luciferase reporter mouse and human tissue specimens. FASEB Journal, 2013, 27, 1342-1350.	0.2	7
42	From pure compounds to complex exposure: Effects of dietary cadmium and lignans on estrogen, epidermal growth factor receptor, and mitogen activated protein kinase signaling in vivo. Toxicology Letters, 2016, 253, 27-35.	0.4	6
43	Reporter Zebrafish: Endocrine Disruption Meets Estrogen Signaling. Endocrinology, 2011, 152, 2542-2545.	1.4	5
44	Transcriptome analysis of the epididymis from <i>Plag1</i> deficient mice suggests dysregulation of sperm maturation and extracellular matrix genes. Developmental Dynamics, 2020, 249, 1500-1513.	0.8	5
45	Overexpression of Human Estrogen Biosynthetic Enzyme Hydroxysteroid (17beta) Dehydrogenase Type 1 Induces Adenomyosis-like Phenotype in Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 4815.	1.8	4
46	Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reproductive Toxicology, 2022, 109, 19-30.	1.3	3
47	Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginalTM Tissue Model. Pharmaceutics, 2022, 14, 1295.	2.0	3
48	Adult Human and Mouse Ovaries Lack DDX4-Expressing Functional Oogonial Stem Cells. Obstetrical and Gynecological Survey, 2016, 71, 29-30.	0.2	1
49	Reply: Impact of first-line cancer treatment on follicle quality in cryopreserved ovarian samples. Human Reproduction, 2020, 35, 1249-1251.	0.4	1