
Marvin H Sommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1656859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded by <i>ORF9</i> . Journal of Virology, 2007, 81, 13200-13208.	3.4	118
2	Essential Functions of the Unique N-Terminal Region of the Varicella-Zoster Virus Glycoprotein E Ectodomain in Viral Replication and in the Pathogenesis of Skin Infection. Journal of Virology, 2006, 80, 9481-9496.	3.4	58
3	Mutagenesis of Varicella-Zoster Virus Glycoprotein B: Putative Fusion Loop Residues Are Essential for Viral Replication, and the Furin Cleavage Motif Contributes to Pathogenesis in Skin Tissue In Vivo. Journal of Virology, 2009, 83, 7495-7506.	3.4	56
4	Granulysin Blocks Replication of Varicella-Zoster Virus and Triggers Apoptosis of Infected Cells. Viral Immunology, 2001, 14, 125-133.	1.3	51
5	Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 282-287.	7.1	46
6	Characterization of Varicella-Zoster Virus Glycoprotein K (Open Reading Frame 5) and Its Role in Virus Growth. Journal of Virology, 1999, 73, 4197-4207.	3.4	46
7	Structure–function analysis of varicella-zoster virus glycoprotein H identifies domain-specific roles for fusion and skin tropism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18412-18417.	7.1	44
8	An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1911-1916.	7.1	38
9	Deletion of the First Cysteine-Rich Region of the Varicella-Zoster Virus Glycoprotein E Ectodomain Abolishes the gE and gl Interaction and Differentially Affects Cell-Cell Spread and Viral Entry. Journal of Virology, 2009, 83, 228-240.	3.4	37
10	A glycoprotein B-neutralizing antibody structure at 2.8 à uncovers a critical domain for herpesvirus fusion initiation. Nature Communications, 2020, 11, 4141.	12.8	23
11	Mutagenesis of Varicella-Zoster Virus Glycoprotein I (gl) Identifies a Cysteine Residue Critical for gE/gl Heterodimer Formation, gl Structure, and Virulence in Skin Cells. Journal of Virology, 2011, 85, 4095-4110.	3.4	17
12	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathogens, 2021, 17, e1008961.	4.7	12
13	The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathogens, 2020, 16, e1009166.	4.7	11
14	The C-terminus of varicella-zoster virus glycoprotein M contains trafficking motifs that mediate skin virulence in the SCID-human model of VZV pathogenesis. Virology, 2018, 523, 110-120.	2.4	9
15	Cellular transcription factor YY1 mediates the varicella-zoster virus (VZV) IE62 transcriptional activation. Virology, 2014, 449, 244-253.	2.4	7
16	Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription. Virology, 2015, 481, 179-186.	2.4	3
17	Characterization of Household and Community Shedding and Transmission of Oral Polio Vaccine in Mexican Communities With Varying Vaccination Coverage. Clinical Infectious Diseases, 2018, 67, S4-S17.	5.8	3
18	Validation of a High-throughput, Multiplex, Real-time Qualitative Polymerase Chain Reaction Assay for the Detection of Sabin Oral Polio Vaccine in Environmental Samples. Clinical Infectious Diseases, 2018, 67. S98-S102.	5.8	2

#	Article	IF	CITATIONS
19	Lab Protocol Paper: Use of a High-throughput, Multiplex Reverse-transcription Quantitative Polymerase Chain Reaction Assay for Detection of Sabin Oral Polio Vaccine in Fecal Samples. Clinical Infectious Diseases, 2018, 67, S121-S126.	5.8	1
20	1668. No Impact of Nutritional Status on Oral Polio Vaccine shedding after Vaccination of Under 5 Children in Rural Mexico. Open Forum Infectious Diseases, 2019, 6, S610-S610.	0.9	0
21	Title is missing!. , 2020, 16, e1009166.		0
22	Title is missing!. , 2020, 16, e1009166.		0
23	Title is missing!. , 2020, 16, e1009166.		0
24	Title is missing!. , 2020, 16, e1009166.		0
25	Title is missing!. , 2020, 16, e1009166.		0
26	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
27	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
28	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
29	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		Ο