Miguel ÕOlalla-TÃ;rraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/165643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. Current Research in Insect Science, 2022, 2, 100023.	1.7	7
2	Venomous animals in a changing world. Global Change Biology, 2022, 28, 3750-3753.	9.5	5
3	Can classic biological invasion hypotheses be applied to reported cases of non-native terrestrial species in the Maritime Antarctic?. Antarctic Science, 2022, 34, 226-245.	0.9	4
4	Physical constraints on thermoregulation and flight drive morphological evolution in bats. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2103745119.	7.1	10
5	Ecological and historical legacies on global diversity gradients in marine elapid snakes. Austral Ecology, 2021, 46, 3-7.	1.5	1
6	Body size distributions of anurans are explained by diversification rates and the environment. Global Ecology and Biogeography, 2021, 30, 154-164.	5.8	7
7	Water constraints drive allometric patterns in the body shape of tree frogs. Scientific Reports, 2021, 11, 1218.	3.3	4
8	The evolution of critical thermal limits of life on Earth. Nature Communications, 2021, 12, 1198.	12.8	149
9	Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biology, 2021, 44, 1203-1208.	1.2	6
10	Ensemble forecasting of invasion risk for four alien springtail (Collembola) species in Antarctica. Polar Biology, 2021, 44, 2151-2164.	1.2	7
11	Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conservation and Diversity, 2020, 13, 63-76.	3.0	10
12	Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a subâ€Antarctic insect. Journal of Biogeography, 2020, 47, 658-673.	3.0	27
13	Past changes on fauna and flora distribution. , 2020, , 165-179.		1
14	The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. Journal of Animal Ecology, 2020, 89, 1277-1285.	2.8	23
15	Changing Only Slowly: The Role of Phylogenetic Niche Conservatism in Caviidae (Rodentia) Speciation. Journal of Mammalian Evolution, 2020, 27, 713-721.	1.8	11
16	Geographic variation of body size in New World anurans: energy and water in a balance. Ecography, 2019, 42, 456-466.	4.5	27
17	Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190036.	4.0	215
18	A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography, 2019, 42, 1124-1141.	4.5	36

#	Article	IF	CITATIONS
19	Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography, 2019, 42, 1682-1690.	4.5	21
20	Anuran 3D models reveal the relationship between surface areaâ€ŧoâ€volume ratio and climate. Journal of Biogeography, 2019, 46, 1429-1437.	3.0	14
21	Biological traits, phylogeny and human footprint signatures on the geographical range size of passerines (Order <i>Passeriformes</i>) worldwide. Global Ecology and Biogeography, 2019, 28, 1183-1194.	5.8	13
22	Upscaling Microclimatic Conditions into Body Temperature Distributions of Ectotherms. American Naturalist, 2019, 193, 677-687.	2.1	7
23	A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Clobal Ecology and Biogeography, 2019, 28, 793-803.	5.8	19
24	Niche divergence and diversification in South American freshwater turtles of the genus Acanthochelys (Chelidae). Amphibia - Reptilia, 2019, 40, 475-485.	0.5	0
25	Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment. Journal of Environmental Management, 2019, 232, 73-89.	7.8	63
26	Temperature is the main correlate of the global biogeography of turtle body size. Global Ecology and Biogeography, 2018, 27, 429-438.	5.8	12
27	GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 2018, 5, 180022.	5.3	164
28	Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography, 2018, 41, 607-621.	4.5	25
29	Shallow water ray-finned marine fishes follow Bergmann's rule. Basic and Applied Ecology, 2018, 33, 99-110.	2.7	10
30	Global patterns of mammalian coâ€occurrence: phylogenetic and body size structure within species ranges. Journal of Biogeography, 2017, 44, 136-146.	3.0	27
31	MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Scientific Data, 2017, 4, 170078.	5.3	106
32	The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison. Acta Oecologica, 2017, 82, 10-15.	1.1	3
33	Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biology, 2017, 23, 2863-2873.	9.5	54
34	Time and environment explain the current richness distribution of nonâ€marine turtles worldwide. Ecography, 2017, 40, 1402-1411.	4.5	20
35	Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. Journal of Biogeography, 2017, 44, 99-110.	3.0	45
36	High Resolution Spatial Mapping of Human Footprint across Antarctica and Its Implications for the Strategic Conservation of Avifauna. PLoS ONE, 2017, 12, e0168280.	2.5	63

#	Article	IF	CITATIONS
37	Bergmann's rule in the oceans? Temperature strongly correlates with global interspecific patterns of body size in marine mammals. Global Ecology and Biogeography, 2016, 25, 1206-1215.	5.8	39
38	Assessing the invasive risk of two non-native Agrostis species on sub-Antarctic Macquarie Island. Polar Biology, 2016, 39, 2361-2371.	1.2	13
39	Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, 2016, 43, 1166-1178.	3.0	103
40	Phylogenetic path analysis reveals the importance of nicheâ€related biological traits on geographic range size in mammals. Global Change Biology, 2015, 21, 3194-3196.	9.5	15
41	Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation. Journal of Animal Ecology, 2015, 84, 851-860.	2.8	32
42	MacroecologÃa: una disciplina de investigación en auge. Ecosistemas, 2014, 23, 1-3.	0.4	2
43	Human impact and species richness of terrestrial vertebrate: a review at different macroecological scales. Ecosistemas, 2014, 23, 13-20.	0.4	2
44	The Imprint of Cenozoic Migrations and Evolutionary History on the Biogeographic Gradient of Body Size in New World Mammals. American Naturalist, 2012, 180, 246-256.	2.1	34
45	thesis abstract: On the biogeography of vertebrate body size: ecological and evolutionary insights from assemblage-level patterns. Frontiers of Biogeography, 2012, 2, .	1.8	0
46	Understanding global patterns in amphibian geographic range size: does Rapoport rule?. Global Ecology and Biogeography, 2012, 21, 179-190.	5.8	73
47	On the selection of phylogenetic eigenvectors for ecological analyses. Ecography, 2012, 35, 239-249.	4.5	107
48	Environmental determinants of woody and herb plant species richness patterns in Great Britain. Ecoscience, 2011, 18, 394-401.	1.4	11
49	Niche conservatism and species richness patterns of squamate reptiles in eastern and southern Africa. Austral Ecology, 2011, 36, 550-558.	1.5	14
50	Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 2011, 38, 2237-2247.	3.0	75
51	<i>"Nullius in Bergmannâ€</i> or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 2011, 120, 1441-1444.	2.7	64
52	Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms. Animal Conservation, 2010, 13, 363-373.	2.9	42
53	Crossâ€species and assemblageâ€based approaches to Bergmann's rule and the biogeography of body size in <i>Plethodon</i> salamanders of eastern North America. Ecography, 2010, 33, 362-368.	4.5	45
54	The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecology and Biogeography, 2010, 19, 40-49.	5.8	63

MIGUEL ÕOLALLA-TÃiRRAGA

#	Article	IF	CITATIONS
55	Deriving Species Richness, Endemism, and Threatened Species Patterns from Incomplete Distribution Data in the Bioko Island, Equatorial Guinea. Natureza A Conservacao, 2010, 08, 27-33.	2.5	7
56	Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia, 2009, 159, 617-626.	2.0	27
57	Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography, 2009, 36, 2222-2236.	3.0	69
58	Geographic body size gradients in tropical regions: water deficit and anuran body size in the Brazilian Cerrado. Ecography, 2009, 32, 581-590.	4.5	74
59	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231
60	Bergmann's rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography, 2008, 17, 274-283.	5.8	133
61	Illegal logging, landscape structure and the variation of tree species richness across North Andean forest remnants. Forest Ecology and Management, 2008, 255, 1892-1899.	3.2	27
62	Dispersal potentials determine responses of woody plant species richness to environmental factors in fragmented Mediterranean landscapes. Forest Ecology and Management, 2008, 255, 2894-2906.	3.2	23
63	GLOBAL MODELS FOR PREDICTING WOODY PLANT RICHNESS FROM CLIMATE: COMMENT. Ecology, 2007, 88, 255-259.	3.2	17
64	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	3.2	139
65	Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann's rule, urodeles its converse. Global Ecology and Biogeography, 2007, 16, 606-617.	5.8	189
66	A conceptual framework to assess sustainability in urban ecological systems. International Journal of Sustainable Development and World Ecology, 2006, 13, 1-15.	5.9	45
67	Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography, 2006, 33, 781-793.	3.0	174
68	Ecological and evolutionary components of body size: geographic variation of venomous snakes at the global scale. Biological Journal of the Linnean Society, 0, 98, 94-109.	1.6	51