Qilong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/165598/publications.pdf

Version: 2024-02-01

318942 340414 1,786 49 23 39 h-index citations g-index papers 50 50 50 2388 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-scale adaptions of dynamic bio-interfaces. Smart Materials in Medicine, 2022, 3, 37-40.	3.7	8
2	Light-induced charged slippery surfaces. Science Advances, 2022, 8, .	4.7	63
3	Sensing Materials: Bio-inspired Materials. , 2021, , .		O
4	Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomaterialia, 2021, 123, 312-324.	4.1	22
5	Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. Journal of Materials Science: Materials in Medicine, 2021, 32, 9.	1.7	10
6	Cell-Incorporated Bioactive Tissue Engineering Scaffolds made by Concurrent Cell Electrospinning and Emulsion Electrospinning. Nano LIFE, 2021, 11 , .	0.6	5
7	Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. Small, 2020, 16, e1903798.	5.2	80
8	Reconfiguration, Camouflage, and Colorâ€Shifting for Bioinspired Adaptive Hydrogelâ€Based Millirobots. Advanced Functional Materials, 2020, 30, 1909202.	7.8	153
9	A stage-specific cell-manipulation platform for inducing endothelialization on demand. National Science Review, 2020, 7, 629-643.	4.6	38
10	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	3.1	27
11	Intelligent Polymerâ€Based Bioinspired Actuators: From Monofunction to Multifunction. Advanced Intelligent Systems, 2020, 2, 2000138.	3.3	33
12	Hydrogelâ€Based Millirobots: Reconfiguration, Camouflage, and Colorâ€Shifting for Bioinspired Adaptive Hydrogelâ€Based Millirobots (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070064.	7.8	2
13	Inkless multi-color writing and copying of laser-programmable photonic crystals. Materials Horizons, 2020, 7, 1341-1347.	6.4	59
14	Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. Journal of Materials Chemistry B, 2020, 8, 3519-3526.	2.9	49
15	Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication, 2020, 12, 045025.	3.7	49
16	Electrospinning and Electrospray for Biomedical Applications. , 2019, , 330-344.		4
17	Biomedical Composites., 2019,, 34-52.		4
18	Chameleon-Inspired Structural-Color Actuators. Matter, 2019, 1, 626-638.	5.0	197

#	Article	IF	Citations
19	Dual release of VEGF and PDGF from emulsion electrospun bilayer scaffolds consisting of orthogonally aligned nanofibers for gastrointestinal tract regeneration. MRS Communications, 2019, 9, 1098-1104.	0.8	12
20	Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers. Advanced Materials Technologies, 2019, 4, 1900566.	3.0	46
21	Bio-inspired sensing and actuating materials. Journal of Materials Chemistry C, 2019, 7, 6493-6511.	2.7	112
22	Bicomponent nanofibrous scaffolds with dual release of anticancer drugs and biomacromolecules. MRS Communications, 2019, 9, 413-420.	0.8	7
23	Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15927-15935.	4.0	19
24	Bioinspired Actuators Based on Stimuliâ€Responsive Polymers. Chemistry - an Asian Journal, 2019, 14, 2369-2387.	1.7	60
25	Manipulating the release of growth factors from biodegradable microspheres for potentially different therapeutic effects by using two different electrospray techniques for microsphere fabrication. Polymer Degradation and Stability, 2019, 162, 169-179.	2.7	8
26	Shapeâ€Programmable Electronics: Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers (Adv. Mater. Technol. 11/2019). Advanced Materials Technologies, 2019, 4, 1970063.	3.0	4
27	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 1-12.	2.8	16
28	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 6398296.	2.8	65
29	Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomedical Materials (Bristol), 2018, 13, 044107.	1.7	50
30	Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 2018, 28, 1801027.	7.8	125
31	Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23583-23594.	4.0	49
32	Light-Powered Micro/Nanomotors. Micromachines, 2018, 9, 41.	1.4	63
33	Tissue Engineering: Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization (Adv.) Tj ETQo	ղ1 _{7.8} 0.784	13 ₄ 4 rgBT /C
34	Tunable shape memory polymer mold for multiple microarray replications. Journal of Materials Chemistry A, 2018, 6, 24748-24755.	5.2	52
35	Modulating the release of vascular endothelial growth factor by negative-voltage emulsion electrospinning for improved vascular regeneration. Materials Letters, 2017, 193, 1-4.	1.3	28
36	Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication, 2017, 9, 025031.	3.7	83

#	Article	IF	Citations
37	Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38117-38124.	4.0	46
38	Photothermally Triggered Shapeâ€Adaptable 3D Flexible Electronics. Advanced Materials Technologies, 2017, 2, 1700120.	3.0	69
39	Thermal-induced three-dimensional shape transformations of hydrogel sheets. , 2017, , .		0
40	Fabrication of inverse opal beads based on biocompatible and biodegradable polymer., 2017,,.		1
41	Strategies to incorporate polyelectrolyte in emulsion electrospun nanofibrous tissue engineering scaffolds for modulating growth factor release from the scaffolds. Materials Letters, 2016, 162, 48-52.	1.3	18
42	Controlling Pore Size of Tissue Engineering Scaffolds Fabricated by Electrospinning and Phase Separation. Materials Science Forum, 2015, 815, 379-384.	0.3	1
43	Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation. Nanoscale, 2014, 6, 6468.	2.8	13
44	A Rapid Screening Method for Wound Dressing by Cellâ€onâ€aâ€Chip Device. Advanced Healthcare Materials, 2012, 1, 560-566.	3.9	26
45	Controlled Release of Growth Factors from Tissue Engineering Scaffolds Made by Positive and Negative Voltage Electrospinning. Materials Science Forum, 0, 815, 385-389.	0.3	1
46	Electrospinning and Electrospraying with Cells for Applications in Biomanufacturing. Nano LIFE, 0, , 2141003 .	0.6	1
47	CHAPTER 20. Smart Multifunctional Tissue Engineering Scaffolds. RSC Smart Materials, 0, , 558-595.	0.1	4
48	Advanced tissue engineering scaffolds for postoperative cancer patients. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
49	Growth factor-encapsulated and cell-laden nanofibrous scaffolds for vascular regeneration. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0