Qilong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/165598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chameleon-Inspired Structural-Color Actuators. Matter, 2019, 1, 626-638.	10.0	197
2	Reconfiguration, Camouflage, and Colorâ€Shifting for Bioinspired Adaptive Hydrogelâ€Based Millirobots. Advanced Functional Materials, 2020, 30, 1909202.	14.9	153
3	Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 2018, 28, 1801027.	14.9	125
4	Bio-inspired sensing and actuating materials. Journal of Materials Chemistry C, 2019, 7, 6493-6511.	5.5	112
5	Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication, 2017, 9, 025031.	7.1	83
6	Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. Small, 2020, 16, e1903798.	10.0	80
7	Photothermally Triggered Shapeâ€Adaptable 3D Flexible Electronics. Advanced Materials Technologies, 2017, 2, 1700120.	5.8	69
8	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 6398296.	5.7	65
9	Light-Powered Micro/Nanomotors. Micromachines, 2018, 9, 41.	2.9	63
10	Light-induced charged slippery surfaces. Science Advances, 2022, 8, .	10.3	63
11	Bioinspired Actuators Based on Stimuliâ€Responsive Polymers. Chemistry - an Asian Journal, 2019, 14, 2369-2387.	3.3	60
12	Inkless multi-color writing and copying of laser-programmable photonic crystals. Materials Horizons, 2020, 7, 1341-1347.	12.2	59
13	Tunable shape memory polymer mold for multiple microarray replications. Journal of Materials Chemistry A, 2018, 6, 24748-24755.	10.3	52
14	Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomedical Materials (Bristol), 2018, 13, 044107.	3.3	50
15	Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS Applied Materials & Interfaces, 2018, 10, 23583-23594.	8.0	49
16	Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. Journal of Materials Chemistry B, 2020, 8, 3519-3526.	5.8	49
17	Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication, 2020, 12, 045025.	7.1	49
18	Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS Applied Materials & Interfaces, 2017, 9, 38117-38124.	8.0	46

QILONG ZHAO

#	Article	IF	CITATIONS
19	Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers. Advanced Materials Technologies, 2019, 4, 1900566.	5.8	46
20	A stage-specific cell-manipulation platform for inducing endothelialization on demand. National Science Review, 2020, 7, 629-643.	9.5	38
21	Intelligent Polymerâ€Based Bioinspired Actuators: From Monofunction to Multifunction. Advanced Intelligent Systems, 2020, 2, 2000138.	6.1	33
22	Modulating the release of vascular endothelial growth factor by negative-voltage emulsion electrospinning for improved vascular regeneration. Materials Letters, 2017, 193, 1-4.	2.6	28
23	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	6.0	27
24	A Rapid Screening Method for Wound Dressing by Cellâ€onâ€aâ€Chip Device. Advanced Healthcare Materials, 2012, 1, 560-566.	7.6	26
25	Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomaterialia, 2021, 123, 312-324.	8.3	22
26	Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied Materials & Interfaces, 2019, 11, 15927-15935.	8.0	19
27	Strategies to incorporate polyelectrolyte in emulsion electrospun nanofibrous tissue engineering scaffolds for modulating growth factor release from the scaffolds. Materials Letters, 2016, 162, 48-52.	2.6	18
28	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 1-12.	5.7	16
29	Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation. Nanoscale, 2014, 6, 6468.	5.6	13
30	Dual release of VEGF and PDGF from emulsion electrospun bilayer scaffolds consisting of orthogonally aligned nanofibers for gastrointestinal tract regeneration. MRS Communications, 2019, 9, 1098-1104.	1.8	12
31	Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. Journal of Materials Science: Materials in Medicine, 2021, 32, 9.	3.6	10
32	Manipulating the release of growth factors from biodegradable microspheres for potentially different therapeutic effects by using two different electrospray techniques for microsphere fabrication. Polymer Degradation and Stability, 2019, 162, 169-179.	5.8	8
33	Multi-scale adaptions of dynamic bio-interfaces. Smart Materials in Medicine, 2022, 3, 37-40.	6.7	8
34	Bicomponent nanofibrous scaffolds with dual release of anticancer drugs and biomacromolecules. MRS Communications, 2019, 9, 413-420.	1.8	7
35	Cell-Incorporated Bioactive Tissue Engineering Scaffolds made by Concurrent Cell Electrospinning and Emulsion Electrospinning. Nano LIFE, 2021, 11, .	0.9	5
36	Tissue Engineering: Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization (Adv.) Tj ETQ	14.9 rgl	3T /Overlock

3

#	Article	IF	CITATIONS
37	Electrospinning and Electrospray for Biomedical Applications. , 2019, , 330-344.		4
38	Biomedical Composites. , 2019, , 34-52.		4
39	Shapeâ€Programmable Electronics: Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers (Adv. Mater. Technol. 11/2019). Advanced Materials Technologies, 2019, 4, 1970063.	5.8	4
40	CHAPTER 20. Smart Multifunctional Tissue Engineering Scaffolds. RSC Smart Materials, 0, , 558-595.	0.1	4
41	Hydrogelâ€Based Millirobots: Reconfiguration, Camouflage, and Colorâ€Shifting for Bioinspired Adaptive Hydrogelâ€Based Millirobots (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070064.	14.9	2
42	Controlling Pore Size of Tissue Engineering Scaffolds Fabricated by Electrospinning and Phase Separation. Materials Science Forum, 2015, 815, 379-384.	0.3	1
43	Controlled Release of Growth Factors from Tissue Engineering Scaffolds Made by Positive and Negative Voltage Electrospinning. Materials Science Forum, 0, 815, 385-389.	0.3	1
44	Fabrication of inverse opal beads based on biocompatible and biodegradable polymer. , 2017, , .		1
45	Electrospinning and Electrospraying with Cells for Applications in Biomanufacturing. Nano LIFE, 0, , 2141003.	0.9	1
46	Thermal-induced three-dimensional shape transformations of hydrogel sheets. , 2017, , .		0
47	Sensing Materials: Bio-inspired Materials. , 2021, , .		0
48	Advanced tissue engineering scaffolds for postoperative cancer patients. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
49	Growth factor-encapsulated and cell-laden nanofibrous scaffolds for vascular regeneration. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0