
Renzhong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1655712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. Agriculture, Ecosystems and Environment, 2009, 134, 46-52.	5.3	42
2	Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability. PLoS ONE, 2012, 7, e35165.	2.5	38
3	Anatomical and Physiological Plasticity in Leymus chinensis (Poaceae) along Large-Scale Longitudinal Gradient in Northeast China. PLoS ONE, 2011, 6, e26209.	2.5	36
4	Morphological, physiological and anatomical traits of plant functional types in temperate grasslands along a large-scale aridity gradient in northeastern China. Scientific Reports, 2017, 7, 40900.	3.3	33
5	Seasonal Dynamics in Resource Partitioning to Growth and Storage in Response to Drought in a Perennial Rhizomatous Grass, Leymus chinensis. Journal of Plant Growth Regulation, 2008, 27, 39-48.	5.1	31
6	Climate-driven C4 plant distributions in China: divergence in C4 taxa. Scientific Reports, 2016, 6, 27977.	3.3	25
7	Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern China. Global Ecology and Biogeography, 2022, 31, 886-900.	5.8	20
8	Comparing Soil Organic Carbon Dynamics in Perennial Grasses and Shrubs in a Saline-Alkaline Arid Region, Northwestern China. PLoS ONE, 2012, 7, e42927.	2.5	18
9	Nitrogen acquisition strategies during the winter-spring transitional period are divergent at the species level yet convergent at the ecosystem level in temperate grasslands. Soil Biology and Biochemistry, 2018, 122, 150-159.	8.8	17
10	The retention dynamics of N input within the soil–microbe–plant system in a temperate grassland. Geoderma, 2020, 368, 114290.	5.1	14
11	Strong nonâ€growing season N uptake by deciduous trees in a temperate forest: A ¹⁵ N isotopic experiment. Journal of Ecology, 2021, 109, 3752-3766.	4.0	11
12	Environmental conditions and genetic differentiation: what drives the divergence of coexistingLeymus chinensisecotypes in a large-scale longitudinal gradient?. Journal of Plant Ecology, 2016, 9, 616-628.	2.3	10
13	Plant community responses to increased precipitation and belowground litter addition: Evidence from a 5â€year semiarid grassland experiment. Ecology and Evolution, 2018, 8, 4587-4597.	1.9	9
14	What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?. Scientific Reports, 2016, 6, 26288.	3.3	6
15	Retention of early-spring nitrogen in temperate grasslands: The dynamics of ammonium and nitrate nitrogen differ. Global Ecology and Conservation, 2020, 24, e01335.	2.1	1
16	The retention dynamics of early-spring N input in a temperate forest ecosystem: Implications for winter N deposition. Global Ecology and Conservation, 2022, 33, e01966.	2.1	0