Olivier Coux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1655639/publications.pdf

Version: 2024-02-01

279487 138251 5,798 60 23 58 citations h-index g-index papers 63 63 63 5674 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The C-terminal segment of Leishmania major HslU: Toward potential inhibitors of LmHslVU activity. Bioorganic Chemistry, 2022, 119, 105539.	2.0	1
2	Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genetics, 2022, 18, e1010015.	1.5	17
3	Constitutive Activation of p62/Sequestosome-1-Mediated Proteaphagy Regulates Proteolysis and Impairs Cell Death in Bortezomib-Resistant Mantle Cell Lymphoma. Cancers, 2022, 14, 923.	1.7	5
4	PA28γ–20S proteasome is a proteolytic complex committed to degrade unfolded proteins. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	7
5	Extracellular <scp>20S</scp> proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectinâ€3 agglutination activity. Traffic, 2022, 23, 287-304.	1.3	O
6	The 20S proteasome activator PA28 \hat{I}^3 controls the compaction of chromatin. Journal of Cell Science, 2021, 134, .	1.2	4
7	USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene, 2020, 39, 6009-6023.	2.6	18
8	The Proteasome System in Health and Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 55-100.	0.8	19
9	Proteasome 19S RP and translation preinitiation complexes are secreted within exosomes upon serum starvation. Traffic, 2019, 20, 516-536.	1.3	18
10	The HsIV Protease from Leishmania major and Its Activation by C-terminal HsIU Peptides. International Journal of Molecular Sciences, 2019, 20, 1021.	1.8	3
11	PROTEOSTASIS: A European Network to Break Barriers and Integrate Science on Protein Homeostasis. Trends in Biochemical Sciences, 2019, 44, 383-387.	3.7	15
12	PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28 \hat{l}^3 . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6477-E6486.	3.3	29
13	The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin. Journal of Dermatological Science, 2017, 88, 10-19.	1.0	11
14	The stability of Fbw7α in M-phase requires its phosphorylation by PKC. PLoS ONE, 2017, 12, e0183500.	1.1	4
15	Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. Journal of Biological Chemistry, 2016, 291, 13147-13159.	1.6	47
16	Evolution of Proteasome Regulators in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1363-1379.	1.1	77
17	Tyrosinase Degradation in Amelanotic Melanoma Cells is Mediated by Cytoplasmic Factors in Addition to Proteasome-Mediated Mechanism. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 475-483.	0.4	0
18	Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle, 2014, 13, 3867-3877.	1.3	6

#	Article	IF	CITATIONS
19	High resolution live cell imaging reveals novel cyclin A2 degradation foci involving autophagy. Journal of Cell Science, 2014, 127, 2145-50.	1.2	31
20	The bacterial-like HsIVU protease complex subunits are involved in the control of different cell cycle events in trypanosomatids. Acta Tropica, 2014, 131, 22-31.	0.9	11
21	SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. Nature Communications, 2013, 4, 1850.	5.8	17
22	HIVâ€1, ubiquitin and ubiquitinâ€ike proteins: the dialectic interactions of a virus with a sophisticated network of postâ€translational modifications. Biology of the Cell, 2012, 104, 165-187.	0.7	12
23	Proteolytic activity and expression of the 20S proteasome are increased in psoriasis lesional skin. British Journal of Dermatology, 2011, 165, 311-320.	1.4	15
24	Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks. Biochemical Society Transactions, 2010, 38, 98-103.	1.6	20
25	A Capsid-Encoded PPxY-Motif Facilitates Adenovirus Entry. PLoS Pathogens, 2010, 6, e1000808.	2.1	94
26	\hat{I}^2 TrCP-dependent degradation of CDC25B phosphatase at the metaphase-anaphase transition is a pre-requisite for correct mitotic exit. Cell Cycle, 2010, 9, 4338-4350.	1.3	21
27	Proteasome inhibitors: Dozens of molecules and still counting. Biochimie, 2010, 92, 1530-1545.	1.3	78
28	High yield bacterial expression and purification of active recombinant PA28 $\hat{l}\pm\hat{l}^2$ complex. Protein Expression and Purification, 2009, 64, 219-224.	0.6	10
29	A Novel Role for PA28γ-Proteasome in Nuclear Speckle Organization and SR Protein Trafficking. Molecular Biology of the Cell, 2008, 19, 1706-1716.	0.9	63
30	The Proteasome Regulates HIV-1 Transcription by Both Proteolytic and Nonproteolytic Mechanisms. Molecular Cell, 2007, 25, 369-383.	4.5	83
31	Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC Biochemistry, 2007, 8, S7.	4.4	19
32	Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nature Cell Biology, 2007, 9, 331-338.	4.6	164
33	E4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation. Cell, 2006, 127, 775-788.	13.5	214
34	Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC Biochemistry, 2005, 6, 27.	4.4	20
35	A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nature Cell Biology, 2003, 5, 754-761.	4.6	172
36	An interaction map of proteasome subunits. Biochemical Society Transactions, 2003, 31, 465-469.	1.6	9

#	Article	IF	Citations
37	Regulation of the 26S proteasome activities by peptides mimicking cleavage products. Biochemical and Biophysical Research Communications, 2002, 295, 1090-1095.	1.0	11
38	Regulation of Bovine Papillomavirus Replicative Helicase E1 by the Ubiquitin-Proteasome Pathway. Journal of Virology, 2002, 76, 11350-11358.	1.5	22
39	The 26S Proteasome. Progress in Molecular and Subcellular Biology, 2002, 29, 85-107.	0.9	24
40	Purification and Characterization of Proteasomes from Saccharomyces cerevisiae. Current Protocols in Protein Science, 2001, 24, Unit 21.5.	2.8	17
41	Human Monocytes Possess a Serine Protease Activity Capable of Degrading HIV-1 Reverse Transcriptase in Vitro. Biochemical and Biophysical Research Communications, 2001, 285, 863-872.	1.0	10
42	A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Reports, 2001, 2, 821-828.	2.0	173
43	Functional analysis of the proteasome regulatory particle. Molecular Biology Reports, 1999, 26, 21-28.	1.0	97
44	Hepatitis B Virus X Protein Is both a Substrate and a Potential Inhibitor of the Proteasome Complex. Journal of Virology, 1999, 73, 7231-7240.	1.5	208
45	A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and elF3. Cell, 1998, 94, 615-623.	13.5	859
46	Enzymes Catalyzing Ubiquitination and Proteolytic Processing of the p105 Precursor of Nuclear Factor [§] B1. Journal of Biological Chemistry, 1998, 273, 8820-8828.	1.6	63
47	Germinal vesicle material is dispensable for oscillations in cdc2 and MAP kinase activities, cyclin B degradation and synthesis during meiosis in Xenopus oocytes. , 1998, 90, 497.		2
48	ATPase and ubiquitin-binding proteins of the yeast proteasome. Molecular Biology Reports, 1997, 24, 17-26.	1.0	22
49	HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5808-5813.	3.3	227
50	Structure and Functions of the 20S and 26S Proteasomes. Annual Review of Biochemistry, 1996, 65, 801-847.	5.0	2,357
51	Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature, 1996, 379, 655-657.	13.7	164
52	Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Molecular Genetics and Genomics, 1994, 245, 769-780.	2.4	51
53	The 1.5-nm Projection Structure of HeLa Cell Prosomo-MCP (Proteasome) Provided by Two-Dimensional Crystals. Journal of Structural Biology, 1994, 113, 124-134.	1.3	6
54	The prosomal RNA-binding protein p27K is a member of the $\hat{l}\pm$ -type human prosomal gene family. Molecular Genetics and Genomics, 1993, 237-237, 193-205.	2.4	36

OLIVIER COUX

#	Article	IF	CITATION
55	The major RNA in prosomesof HeLa cells and duck erythroblasts is tRNALys3. Nucleic Acids Research, 1992, 20, 1959-1965.	6.5	34
56	Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene, 1992, 120, 235-242.	1.0	25
57	Structure and RNA content of the prosomes. FEBS Letters, 1992, 300, 49-55.	1.3	21
58	Prosomes and their multicatalytic proteinase activity. FEBS Journal, 1992, 207, 621-630.	0.2	22
59	The protein of Mr 21 000 constituting the prosome-like particle of duck erythroblasts is homologous to apoferritin. FEBS Journal, 1992, 207, 823-832.	0.2	7
60	The prosomes: Molecular and cellular biology. Molecular Biology Reports, 1990, 14, 75-75.	1.0	4