
Olivier Coux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1655639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Functions of the 20S and 26S Proteasomes. Annual Review of Biochemistry, 1996, 65, 801-847.	5.0	2,357
2	A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3. Cell, 1998, 94, 615-623.	13.5	859
3	HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5808-5813.	3.3	227
4	E4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation. Cell, 2006, 127, 775-788.	13.5	214
5	Hepatitis B Virus X Protein Is both a Substrate and a Potential Inhibitor of the Proteasome Complex. Journal of Virology, 1999, 73, 7231-7240.	1.5	208
6	A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Reports, 2001, 2, 821-828.	2.0	173
7	A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nature Cell Biology, 2003, 5, 754-761.	4.6	172
8	ldentification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature, 1996, 379, 655-657.	13.7	164
9	Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nature Cell Biology, 2007, 9, 331-338.	4.6	164
10	Functional analysis of the proteasome regulatory particle. Molecular Biology Reports, 1999, 26, 21-28.	1.0	97
11	A Capsid-Encoded PPxY-Motif Facilitates Adenovirus Entry. PLoS Pathogens, 2010, 6, e1000808.	2.1	94
12	The Proteasome Regulates HIV-1 Transcription by Both Proteolytic and Nonproteolytic Mechanisms. Molecular Cell, 2007, 25, 369-383.	4.5	83
13	Proteasome inhibitors: Dozens of molecules and still counting. Biochimie, 2010, 92, 1530-1545.	1.3	78
14	Evolution of Proteasome Regulators in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1363-1379.	1.1	77
15	Enzymes Catalyzing Ubiquitination and Proteolytic Processing of the p105 Precursor of Nuclear Factor κB1. Journal of Biological Chemistry, 1998, 273, 8820-8828.	1.6	63
16	A Novel Role for PA28Î ³ -Proteasome in Nuclear Speckle Organization and SR Protein Trafficking. Molecular Biology of the Cell, 2008, 19, 1706-1716.	0.9	63
17	Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Molecular Genetics and Genomics, 1994, 245, 769-780.	2.4	51
18	Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. Journal of Biological Chemistry, 2016, 291, 13147-13159.	1.6	47

OLIVIER COUX

#	Article	IF	CITATIONS
19	The prosomal RNA-binding protein p27K is a member of the α-type human prosomal gene family. Molecular Genetics and Genomics, 1993, 237-237, 193-205.	2.4	36
20	The major RNA in prosomesof HeLa cells and duck erythroblasts is tRNALys3. Nucleic Acids Research, 1992, 20, 1959-1965.	6.5	34
21	High resolution live cell imaging reveals novel cyclin A2 degradation foci involving autophagy. Journal of Cell Science, 2014, 127, 2145-50.	1.2	31
22	PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6477-E6486.	3.3	29
23	Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene, 1992, 120, 235-242.	1.0	25
24	The 26S Proteasome. Progress in Molecular and Subcellular Biology, 2002, 29, 85-107.	0.9	24
25	Prosomes and their multicatalytic proteinase activity. FEBS Journal, 1992, 207, 621-630.	0.2	22
26	ATPase and ubiquitin-binding proteins of the yeast proteasome. Molecular Biology Reports, 1997, 24, 17-26.	1.0	22
27	Regulation of Bovine Papillomavirus Replicative Helicase E1 by the Ubiquitin-Proteasome Pathway. Journal of Virology, 2002, 76, 11350-11358.	1.5	22
28	Structure and RNA content of the prosomes. FEBS Letters, 1992, 300, 49-55.	1.3	21
29	βTrCP-dependent degradation of CDC25B phosphatase at the metaphase-anaphase transition is a pre-requisite for correct mitotic exit. Cell Cycle, 2010, 9, 4338-4350.	1.3	21
30	Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC Biochemistry, 2005, 6, 27.	4.4	20
31	Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks. Biochemical Society Transactions, 2010, 38, 98-103.	1.6	20
32	Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC Biochemistry, 2007, 8, S7.	4.4	19
33	The Proteasome System in Health and Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 55-100.	0.8	19
34	Proteasome 19S RP and translation preinitiation complexes are secreted within exosomes upon serum starvation. Traffic, 2019, 20, 516-536.	1.3	18
35	USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene, 2020, 39, 6009-6023.	2.6	18
36	Purification and Characterization of Proteasomes from Saccharomyces cerevisiae. Current Protocols in Protein Science, 2001, 24, Unit 21.5.	2.8	17

OLIVIER COUX

#	Article	IF	CITATIONS
37	SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. Nature Communications, 2013, 4, 1850.	5.8	17
38	Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genetics, 2022, 18, e1010015.	1.5	17
39	Proteolytic activity and expression of the 20S proteasome are increased in psoriasis lesional skin. British Journal of Dermatology, 2011, 165, 311-320.	1.4	15
40	PROTEOSTASIS: A European Network to Break Barriers and Integrate Science on Protein Homeostasis. Trends in Biochemical Sciences, 2019, 44, 383-387.	3.7	15
41	HIVâ€1, ubiquitin and ubiquitinâ€like proteins: the dialectic interactions of a virus with a sophisticated network of postâ€translational modifications. Biology of the Cell, 2012, 104, 165-187.	0.7	12
42	Regulation of the 26S proteasome activities by peptides mimicking cleavage products. Biochemical and Biophysical Research Communications, 2002, 295, 1090-1095.	1.0	11
43	The bacterial-like HslVU protease complex subunits are involved in the control of different cell cycle events in trypanosomatids. Acta Tropica, 2014, 131, 22-31.	0.9	11
44	The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin. Journal of Dermatological Science, 2017, 88, 10-19.	1.0	11
45	Human Monocytes Possess a Serine Protease Activity Capable of Degrading HIV-1 Reverse Transcriptase in Vitro. Biochemical and Biophysical Research Communications, 2001, 285, 863-872.	1.0	10
46	High yield bacterial expression and purification of active recombinant PA28αβ complex. Protein Expression and Purification, 2009, 64, 219-224.	0.6	10
47	An interaction map of proteasome subunits. Biochemical Society Transactions, 2003, 31, 465-469.	1.6	9
48	The protein of Mr 21 000 constituting the prosome-like particle of duck erythroblasts is homologous to apoferritin. FEBS Journal, 1992, 207, 823-832.	0.2	7
49	PA28γ–20S proteasome is a proteolytic complex committed to degrade unfolded proteins. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	7
50	The 1.5-nm Projection Structure of HeLa Cell Prosomo-MCP (Proteasome) Provided by Two-Dimensional Crystals. Journal of Structural Biology, 1994, 113, 124-134.	1.3	6
51	Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle, 2014, 13, 3867-3877.	1.3	6
52	Constitutive Activation of p62/Sequestosome-1-Mediated Proteaphagy Regulates Proteolysis and Impairs Cell Death in Bortezomib-Resistant Mantle Cell Lymphoma. Cancers, 2022, 14, 923.	1.7	5
53	The prosomes: Molecular and cellular biology. Molecular Biology Reports, 1990, 14, 75-75.	1.0	4
54	The 20S proteasome activator PA28Î ³ controls the compaction of chromatin. Journal of Cell Science, 2021, 134, .	1.2	4

4

OLIVIER COUX

#	Article	IF	CITATIONS
55	The stability of Fbw7α in M-phase requires its phosphorylation by PKC. PLoS ONE, 2017, 12, e0183500.	1.1	4
56	The HslV Protease from Leishmania major and Its Activation by C-terminal HslU Peptides. International Journal of Molecular Sciences, 2019, 20, 1021.	1.8	3
57	Germinal vesicle material is dispensable for oscillations in cdc2 and MAP kinase activities, cyclin B degradation and synthesis during meiosis in Xenopus oocytes. , 1998, 90, 497.		2
58	The C-terminal segment of Leishmania major HslU: Toward potential inhibitors of LmHslVU activity. Bioorganic Chemistry, 2022, 119, 105539.	2.0	1
59	Tyrosinase Degradation in Amelanotic Melanoma Cells is Mediated by Cytoplasmic Factors in Addition to Proteasome-Mediated Mechanism. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 475-483.	0.4	Ο
60	Extracellular <scp>20S</scp> proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectinâ€3 agglutination activity. Traffic, 2022, 23, 287-304.	1.3	0