
Jonathan Lou S Esguerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1655299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Islet MicroRNA-200c Is Elevated in Type 2 Diabetes and Targets the Transcription Factor ETV5 to Reduce Insulin Secretion. Diabetes, 2022, 71, 275-284.	0.6	14
2	Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status. IScience, 2022, 25, 103995.	4.1	7
3	Diagnostic potential of miR-483 family for IGF-II producing non-islet cell tumor hypoglycemia. European Journal of Endocrinology, 2021, 184, 41-49.	3.7	4
4	Transcriptional analysis of islets of Langerhans from organ donors of different ages. PLoS ONE, 2021, 16, e0247888.	2.5	12
5	Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease. BMC Cardiovascular Disorders, 2021, 21, 162.	1.7	9
6	Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes. Diabetes, 2021, 70, 2402-2418.	0.6	5
7	TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Reports, 2021, 37, 109807.	6.4	45
8	Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Molecular Metabolism, 2020, 32, 160-167.	6.5	37
9	A circular RNA generated from an intron of the insulin gene controls insulin secretion. Nature Communications, 2020, 11, 5611.	12.8	51
10	Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in β-Cells. Diabetes, 2020, 69, 1193-1205.	0.6	34
11	MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes, 2020, 69, 804-812.	0.6	35
12	Selectively Bred Diabetes Models: GK Rats, NSY Mice, and ON Mice. Methods in Molecular Biology, 2020, 2128, 25-54.	0.9	12
13	<i>In Vivo</i> Silencing of MicroRNA-132 Reduces Blood Glucose and Improves Insulin Secretion. Nucleic Acid Therapeutics, 2019, 29, 67-72.	3.6	28
14	miR-483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease. PLoS ONE, 2018, 13, e0206974.	2.5	38
15	MicroRNAs in islet hormone secretion. Diabetes, Obesity and Metabolism, 2018, 20, 11-19.	4.4	45
16	Islet microRNAs in health and type-2 diabetes. Current Opinion in Pharmacology, 2018, 43, 46-52.	3.5	27
17	Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes, 2017, 66, 1074-1085.	0.6	122
18	Neuron-enriched RNA-binding Proteins Regulate Pancreatic Beta Cell Function and Survival. Journal of Biological Chemistry, 2017, 292, 3466-3480.	3.4	56

JONATHAN LOU S ESGUERRA

#	Article	IF	CITATIONS
19	Endogenous beta-cell CART regulates insulin secretion and transcription of beta-cell genes. Molecular and Cellular Endocrinology, 2017, 447, 52-60.	3.2	12
20	Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Scientific Reports, 2017, 7, 44986.	3.3	64
21	Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetology International, 2017, 8, 139-152.	1.4	5
22	Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. Molecular Metabolism, 2017, 6, 1407-1418.	6.5	57
23	MiRâ€335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiological Reports, 2017, 5, e13493.	1.7	25
24	Confluence does not affect the expression of miR-375 and its direct targets in rat and human insulin-secreting cell lines. PeerJ, 2017, 5, e3503.	2.0	3
25	Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion. EBioMedicine, 2016, 10, 185-194.	6.1	20
26	Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting β-cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases. Molecular and Cellular Endocrinology, 2016, 424, 23-33.	3.2	46
27	CD46 Activation Regulates miR-150–Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells. Journal of Immunology, 2016, 196, 1636-1645.	0.8	48
28	Modulation of micro <scp>RNA</scp> â€375 expression alters voltageâ€gated Na ⁺ channel properties and exocytosis in insulinâ€secreting cells. Acta Physiologica, 2015, 213, 882-892.	3.8	45
29	Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Frontiers in Genetics, 2014, 5, 209.	2.3	35
30	Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biology, 2014, 15, 522.	8.8	195
31	Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Research, 2014, 42, 11818-11830.	14.5	71
32	Role of nonâ€coding <scp>RNA</scp> s in pancreatic betaâ€cell development and physiology. Acta Physiologica, 2014, 211, 273-284.	3.8	67
33	Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13924-13929.	7.1	407
34	CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Medicine, 2014, 12, 87.	5.5	106
35	Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell. Cell Metabolism, 2014, 19, 122-134.	16.2	139
36	MicroRNA-7a regulates pancreatic β cell function. Journal of Clinical Investigation, 2014, 124, 2722-2735.	8.2	251

JONATHAN LOU S ESGUERRA

#	Article	IF	CITATIONS
37	Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs. Genes, 2014, 5, 1018-1031.	2.4	37
38	Synapsins I and II Are Not Required for Insulin Secretion from Mouse Pancreatic Î ² -cells. Endocrinology, 2012, 153, 2112-2119.	2.8	10
39	Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and Is Overexpressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 625-633.	16.2	166
40	A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metabolism, 2012, 16, 122-134.	16.2	323
41	Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Molecular and Cellular Endocrinology, 2012, 364, 36-45.	3.2	111
42	Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochemical and Biophysical Research Communications, 2011, 404, 16-22.	2.1	93
43	Differential Glucose-Regulation of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki Rat. PLoS ONE, 2011, 6, e18613.	2.5	167
44	MicroRNA profiles of CD46-stimulated T cells. Molecular Immunology, 2011, 48, 1691.	2.2	0
45	Beta-Cell Specific Deletion of Dicer1 Leads to Defective Insulin Secretion and Diabetes Mellitus. PLoS ONE, 2011, 6, e29166.	2.5	128
46	Functional importance of individual rRNA 2'-O-ribose methylations revealed by high-resolution phenotyping. Rna, 2008, 14, 649-656.	3.5	59