Antonino Baez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654632/publications.pdf Version: 2024-02-01

Δητομίνο Βλέζ

#	Article	IF	CITATIONS
1	<i>Bacillus cereus</i> MH778713 elicits tomato plant protection against <i>Fusarium oxysporum</i> . Journal of Applied Microbiology, 2022, 132, 470-482.	3.1	31
2	Iron availability enhances the cellular energetics of aerobic Escherichia coli cultures while upregulating anaerobic respiratory chains. New Biotechnology, 2022, 71, 11-20.	4.4	4
3	Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish Journal of Microbiology, 2021, 70, 143-159.	1.7	18
4	A Bacterial Consortium Interacts With Different Varieties of Maize, Promotes the Plant Growth, and Reduces the Application of Chemical Fertilizer Under Field Conditions. Frontiers in Sustainable Food Systems, 2021, 4, .	3.9	23
5	Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. Annals of Microbiology, 2020, 70, .	2.6	4
6	Long-Chain Hydrocarbons (C21, C24, and C31) Released by Bacillus sp. MH778713 Break Dormancy of Mesquite Seeds Subjected to Chromium Stress. Frontiers in Microbiology, 2020, 11, 741.	3.5	14
7	The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biologica Colombiana, 2020, 25, 140-154.	0.4	32
8	Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances. PLoS ONE, 2020, 15, e0240545.	2.5	5
9	Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS ONE, 2019, 14, e0219554.	2.5	17
10	Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS ONE, 2019, 14, e0222438.	2.5	19
11	Chromium Hyper-Tolerant Bacillus sp. MH778713 Assists Phytoremediation of Heavy Metals by Mesquite Trees (Prosopis laevigata). Frontiers in Microbiology, 2019, 10, 1833.	3.5	56
12	Effect of amino acids on transcription and translation of key genes in E. coli K and B grown at a steady state in minimal medium. New Biotechnology, 2019, 49, 120-128.	4.4	7
13	Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Sustainable Development and Biodiversity, 2019, , 11-44.	1.7	7
14	Dioxygen Activation by Laccases: Green Chemistry for Fine Chemical Synthesis. Catalysts, 2018, 8, 223.	3.5	28
15	Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli. Antonie Van Leeuwenhoek, 2017, 110, 115-124.	1.7	5
16	Next generation of microbial inoculants for agriculture and bioremediation. Microbial Biotechnology, 2017, 10, 19-21.	4.2	107
17	Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS ONE, 2017, 12, e0187913.	2.5	106
18	Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microbial Cell Factories, 2014, 13, 181.	4.0	82

ANTONINO BAEZ

#	Article	IF	CITATIONS
19	Production of recombinant protein by a novel oxygen-induced system in Escherichia coli. Microbial Cell Factories, 2014, 13, 50.	4.0	12
20	Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microbial Cell Factories, 2013, 12, 23.	4.0	67
21	Simulation of dissolved CO ₂ gradients in a scaleâ€down system: A metabolic and transcriptional study of recombinant <i>Escherichia coli</i> . Biotechnology Journal, 2011, 6, 959-967.	3.5	27
22	Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 2905-2915.	3.1	572
23	High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Applied Microbiology and Biotechnology, 2011, 90, 1681-1690.	3.6	214
24	Metabolic and transcriptional response of recombinant <i>Escherichia coli</i> to elevated dissolved carbon dioxide concentrations. Biotechnology and Bioengineering, 2009, 104, 102-110.	3.3	40