Jan Jacob Schuringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654408/publications.pdf

Version: 2024-02-01

91 papers 3,366 citations

32 h-index 55 g-index

96 all docs 96 docs citations

96 times ranked 5810 citing authors

#	Article	IF	CITATIONS
1	The Glycolytic Gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nature Communications, 2022, 13, 1105.	5.8	14
2	Inhibition of the succinyl dehydrogenase complex in acute myeloid leukemia leads to a lactate-fuelled respiratory metabolic vulnerability. Nature Communications, 2022, 13, 2013.	5.8	22
3	Monocytosis and its association with clonal hematopoiesis in community-dwelling individuals. Blood Advances, 2022, 6, 4174-4184.	2.5	8
4	The Expression of NTAL and Its Protein Interactors Is Associated With Clinical Outcomes in Acute Myeloid Leukemia. Molecular and Cellular Proteomics, 2021, 20, 100091.	2.5	1
5	Pretransplantation MRD in Older Patients With AML After Treatment With Decitabine or Conventional Chemotherapy. Transplantation and Cellular Therapy, 2021, 27, 246-252.	0.6	9
6	MLL5 improves ATRA driven differentiation and promotes xenotransplant engraftment in acute promyelocytic leukemia model. Cell Death and Disease, 2021, 12, 371.	2.7	5
7	Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged ≥80 years. Blood Advances, 2021, 5, 2115-2122.	2.5	44
8	The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. IScience, 2021, 24, 102435.	1.9	19
9	Peripheral blood cytopenias in the aging general population and risk of incident hematological disease and mortality. Blood Advances, 2021, 5, 3266-3278.	2.5	6
10	CombiFlow: Combinatorial AML-specific plasma membrane expression profiles allow longitudinal tracking of clones. Blood Advances, 2021, , .	2.5	4
11	The Combination of Gefitinib With ATRA and ATO Induces Myeloid Differentiation in Acute Promyelocytic Leukemia Resistant Cells. Frontiers in Oncology, 2021, 11, 686445.	1.3	8
12	CombiFlow: Flow cytometry-based identification and characterization of genetically and functionally distinct AML subclones. STAR Protocols, 2021, 2, 100864.	0.5	1
13	The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis. Haematologica, 2021, 106, 3067-3078.	1.7	18
14	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	1.2	1
15	HUWE1 cooperates with RAS activation to control leukemia cell proliferation and human hematopoietic stem cells differentiation fate. Cancer Gene Therapy, 2020, 27, 830-833.	2.2	4
16	Dissecting Clonal Heterogeneity in AML. Cancer Cell, 2020, 38, 782-784.	7.7	16
17	Reduced SLIT2 is Associated with Increased Cell Proliferation and Arsenic Trioxide Resistance in Acute Promyelocytic Leukemia. Cancers, 2020, 12, 3134.	1.7	7
18	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	3.3	82

#	Article	IF	Citations
19	Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes. Cell Reports, 2019, 26, 1059-1069.e6.	2.9	33
20	Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death and Disease, 2019, 10, 421.	2.7	27
21	Not type of induction therapy but consolidation with allogeneic hematopoietic cell transplantation determines outcome in older AML patients: A single center experience of 355 consecutive patients. Leukemia Research, 2019, 80, 33-39.	0.4	11
22	RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Advances, 2019, 3, 320-332.	2.5	27
23	HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells. Cancer & Metabolism, 2019, 7, 11.	2.4	46
24	Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. ELife, 2019, 8, .	2.8	46
25	Prospective Isolation and Characterization of Genetically and Functionally Distinct AML Subclones. Cancer Cell, 2018, 34, 674-689.e8.	7.7	71
26	Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models. Experimental Hematology, 2017, 51, 36-46.	0.2	19
27	Smart niche usage: release its fat and burn it!. Blood, 2017, 129, 1239-1240.	0.6	1
28	Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death and Disease, 2017, 8, e2927-e2927.	2.7	72
29	BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells. PLoS ONE, 2017, 12, e0189102.	1.1	10
30	Modeling of Chronic Myeloid Leukemia: An Overview of <i>In Vivo </i> Murine and Human Xenograft Models. Stem Cells International, 2016, 2016, 1-12.	1.2	8
31	Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation. PLoS ONE, 2016, 11, e0153226.	1.1	16
32	Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches. Blood, 2016, 128, 2949-2959.	0.6	65
33	Loss of ASXL1 triggers an apoptotic response in human hematopoietic stem and progenitor cells. Experimental Hematology, 2016, 44, 1188-1196.e6.	0.2	11
34	Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34+ Hematopoietic Stem-Progenitor Cells. Stem Cells, 2016, 34, 1651-1663.	1.4	67
35	Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions. Stem Cells and Development, 2016, 25, 427-437.	1.1	10
36	Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 2016, 14, 332-346.	2.9	126

#	Article	IF	Citations
37	Constitutive NF-κB activation in AML: Causes and treatment strategies. Critical Reviews in Oncology/Hematology, 2016, 98, 35-44.	2.0	60
38	RUNX1 Mutations Cause a Myeloid Differentiation Block Leading to the Formation of a Long Term Expanding CD34+/CD33+/CD45RA+/CD123+ Cell Population. Blood, 2016, 128, 1979-1979.	0.6	9
39	Mitochondrial Dysfunction in Human Leukemic Stem/Progenitor Cells upon Loss of RAC2. PLoS ONE, 2015, 10, e0128585.	1.1	15
40	Loss of ASXL1 Triggers an Apoptotic Response in Human Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 4107-4107.	0.6	0
41	Convergence of Hypoxia and TGFÎ ² Pathways on Cell Cycle Regulation in Human Hematopoietic Stem/Progenitor Cells. PLoS ONE, 2014, 9, e93494.	1.1	49
42	ELMO1 Is Upregulated in AML CD34+ Stem/Progenitor Cells, Mediates Chemotaxis and Predicts Poor Prognosis in Normal Karyotype AML. PLoS ONE, 2014, 9, e111568.	1.1	12
43	The TAK1-NF-κB axis as therapeutic target for AML. Blood, 2014, 124, 3130-3140.	0.6	47
44	Aging Impairs Long-Term Hematopoietic Regeneration after Autologous Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 865-871.	2.0	28
45	Ex Vivo Assays to Study Self-Renewal, Long-Term Expansion, and Leukemic Transformation of Genetically Modified Human Hematopoietic and Patient-Derived Leukemic Stem Cells. Methods in Molecular Biology, 2014, 1185, 195-210.	0.4	9
46	Loss of ASXL1 Triggers an Apoptotic Response in Human Hematopoetic Stem and Progenitor Cells. Blood, 2014, 124, 4619-4619.	0.6	0
47	A Proteomics and Transcriptomics Approach to Identify Leukemic Stem Cell (LSC) Markers. Molecular and Cellular Proteomics, 2013, 12, 626-637.	2.5	79
48	Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood, 2013, 121, 2452-2461.	0.6	54
49	Establishing Human Niche Xenograft Models For Myeloid and Lymphoid Leukemia Driven By MLL-AF9. Blood, 2013, 122, 1646-1646.	0.6	1
50	Differential Localization Of RAC1 and RAC2 Reflects Their Specific Functions In Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells. Blood, 2013, 122, 2892-2892.	0.6	0
51	Decreased PU.1 and Enhanced CITED2 Cooperate To Maintain Self-Renewal In Hematopoietic Stem/Progenitors. Blood, 2013, 122, 2411-2411.	0.6	0
52	Convergence Of Hypoxia and TGF \hat{l}^2 Pathways On Cell Cycle Regulation In Human Hematopoietic Stem/Progenitor Cells. Blood, 2013, 122, 3694-3694.	0.6	1
53	Mouse Versus Human Extrinsic Cues Dictate Transformation Potential In BCR-ABL/BMI1-Induced Leukemia In Humanized Xenograft Models. Blood, 2013, 122, 515-515.	0.6	29
54	STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. Jak-stat, 2012, 1, 13-25.	2.2	22

#	Article	IF	Citations
55	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	12.8	599
56	Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood, 2012, 120, e9-e16.	0.6	104
57	Differential Localization of RAC1 and RAC2 Reflects Their Specific Functions in Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells Blood, 2012, 120, 2302-2302.	0.6	0
58	Identification of HIF2α as an important STAT5 target gene in human hematopoietic stem cells. Blood, 2011, 117, 3320-3330.	0.6	63
59	KRASG12V Enhances Proliferation and Initiates Myelomonocytic Differentiation in Human Stem/Progenitor Cells via Intrinsic and Extrinsic Pathways. Journal of Biological Chemistry, 2011, 286, 6061-6070.	1.6	21
60	Down-regulation of GATA1 uncouples STAT5-induced erythroid differentiation from stem/progenitor cell proliferation. Blood, 2010, 115, 4367-4376.	0.6	22
61	BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood, 2010, 116, 4621-4630.	0.6	72
62	Single-Cell STAT5 Signal Transduction Profiling in Normal and Leukemic Stem and Progenitor Cell Populations Reveals Highly Distinct Cytokine Responses. PLoS ONE, 2009, 4, e7989.	1.1	28
63	Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood, 2009, 114, 1498-1505.	0.6	127
64	Ex Vivo Assays to Study Self-Renewal and Long-Term Expansion of Genetically Modified Primary Human Acute Myeloid Leukemia Stem Cells. Methods in Molecular Biology, 2009, 538, 287-300.	0.4	29
65	Autologous Stem Cell Transplantation Induces a Phenotypical Shift From CMP to GMP Progenitors, Reduces Clonogenic Potential and Enhances in Vitro and In Vivo Cycling Activity Defined by 18f-FLT PET Scan Blood, 2009, 114, 4473-4473.	0.6	0
66	Overexpression of Oncogenic KRAS G12V in Human Stem and Progenitor Cells Enhances Proliferation and Initiates Monocytic Differentiation Via Intrinsic and Extrinsic Pathways Blood, 2009, 114, 3975-3975.	0.6	0
67	Single-Cell STAT5 Signal Transduction Profiling in Normal and Leukemic Stem and Progenitor Cell Populations Reveals Highly Distinct Cytokine Responses Blood, 2009, 114, 2510-2510.	0.6	0
68	Identification of Human Hematopoietic Stem Cell-Specific STAT5 Target Genes Involved in Self-Renewal and Transformation Blood, 2009, 114, 568-568.	0.6	0
69	Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Experimental Hematology, 2008, 36, 1254-1265.	0.2	35
70	Maximal STAT5-Induced Proliferation and Self-Renewal at Intermediate STAT5 Activity Levels. Molecular and Cellular Biology, 2008, 28, 6668-6680.	1.1	76
71	Reduced activation of protein kinase B, Rac, and F-actin polymerization contributes to an impairment of stromal cellâ \in derived factor- 1 â \in induced migration of CD34+ cells from patients with myelodysplasia. Blood, 2008, 111, 359-368.	0.6	43
72	Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood, 2008, 111, 2621-2630.	0.6	98

#	Article	IF	CITATIONS
73	Distinct Gene Expression Profiling in AML in Elderly Versus Younger Patients. Blood, 2008, 112, 2546-2546.	0.6	8
74	The Polycomb Gene BMI1 Collaborates with BCR-ABL in Leukemic Transformation of Human Cord Blood CD34+ Cells Blood, 2008, 112, 1350-1350.	0.6	0
75	Inhibition of Long-Term Expansion in a Subgroup of Acute Myeloid Leukemia Samples by Dasatinib. Blood, 2008, 112, 4016-4016.	0.6	O
76	STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood, 2007, 110, 2880-2888.	0.6	91
77	Reintroduction of C/EBPα in leukemic CD34+ stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood, 2007, 110, 1317-1325.	0.6	41
78	Expansion of normal and leukemic human hematopoietic stem/progenitor cells requires Rac-mediated interaction with stromal cells. Experimental Hematology, 2007, 35, 782-792.	0.2	22
79	Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Experimental Hematology, 2007, 35, 1538-1549.	0.2	80
80	AML1/RUNX1, One of the Most Common Targets of Aberration in Acute Myeloid Leukemia as a Transcriptional Regulator of Vascular Endothelial Growth Factor (VEGFA) Blood, 2007, 110, 1618-1618.	0.6	0
81	Transcription Factor Dosage: Maximal STAT5-Induced Proliferation and Stem Cell Self-Renewal at Intermediate STAT5 Activity Levels Blood, 2007, 110, 2242-2242.	0.6	27
82	Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche?. Human Molecular Genetics, 2006, 15, R210-R219.	1.4	102
83	STAT5-induced self-renewal and impaired myelopoiesis of human hematopoietic stem/progenitor cells involves down-modulation of C/EBPα. Blood, 2006, 107, 4326-4333.	0.6	40
84	Enforced Expression of NUP98-HOXA9 in Human CD34+ Cells Enhances Stem Cell Proliferation. Cancer Research, 2006, 66, 11781-11791.	0.4	73
85	Ex-Vivo Expansion of Human Cord Blood CD34+ Cells by Overexpression of Bmi-1 Blood, 2006, 108, 1329-1329.	0.6	0
86	Dose Dependent Effects of STAT5 on Proliferation, Differentiation and Self Renewal of Hematopoietic Stem/Progenitor Cells Blood, 2006, 108, 1321-1321.	0.6	0
87	Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood, 2005, 105, 77-84.	0.6	51
88	Expansion of Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells Requires Rac-Mediated Interaction with Stromal Cells Blood, 2005, 106, 1398-1398.	0.6	0
89	STAT5-Induced Self-Renewal and Impaired Myelopoiesis of Human Hematopoietic Stem/Progenitor Cells Involves Downmodulation of C/EBPα Blood, 2005, 106, 268-268.	0.6	0
90	Constitutive Activation of STAT5A Promotes Human Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. Journal of Experimental Medicine, 2004, 200, 623-635.	4.2	115

#	Article	IF	CITATIONS
91	Enforced Activation of STAT5A Facilitates the Generation of Embryonic Stem-Derived Hematopoietic Stem Cells That Contribute to Hematopoiesis In Vivo. Stem Cells, 2004, 22, 1191-1204.	1.4	45