
Jan Jacob Schuringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	12.8	599
2	Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood, 2009, 114, 1498-1505.	0.6	127
3	Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 2016, 14, 332-346.	2.9	126
4	Constitutive Activation of STAT5A Promotes Human Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. Journal of Experimental Medicine, 2004, 200, 623-635.	4.2	115
5	Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood, 2012, 120, e9-e16.	0.6	104
6	Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche?. Human Molecular Genetics, 2006, 15, R210-R219.	1.4	102
7	Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood, 2008, 111, 2621-2630.	0.6	98
8	STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood, 2007, 110, 2880-2888.	0.6	91
9	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	3.3	82
10	Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Experimental Hematology, 2007, 35, 1538-1549.	0.2	80
11	A Proteomics and Transcriptomics Approach to Identify Leukemic Stem Cell (LSC) Markers. Molecular and Cellular Proteomics, 2013, 12, 626-637.	2.5	79
12	Maximal STAT5-Induced Proliferation and Self-Renewal at Intermediate STAT5 Activity Levels. Molecular and Cellular Biology, 2008, 28, 6668-6680.	1.1	76
13	Enforced Expression of NUP98-HOXA9 in Human CD34+ Cells Enhances Stem Cell Proliferation. Cancer Research, 2006, 66, 11781-11791.	0.4	73
14	BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood, 2010, 116, 4621-4630.	0.6	72
15	Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death and Disease, 2017, 8, e2927-e2927.	2.7	72
16	Prospective Isolation and Characterization of Genetically and Functionally Distinct AML Subclones. Cancer Cell, 2018, 34, 674-689.e8.	7.7	71
17	Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34+ Hematopoietic Stem-Progenitor Cells. Stem Cells, 2016, 34, 1651-1663.	1.4	67
18	Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches. Blood, 2016, 128, 2949-2959.	0.6	65

JAN JACOB SCHURINGA

#	Article	IF	CITATIONS
19	Identification of HIF2α as an important STAT5 target gene in human hematopoietic stem cells. Blood, 2011, 117, 3320-3330.	0.6	63
20	Constitutive NF-κB activation in AML: Causes and treatment strategies. Critical Reviews in Oncology/Hematology, 2016, 98, 35-44.	2.0	60
21	Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood, 2013, 121, 2452-2461.	0.6	54
22	Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood, 2005, 105, 77-84.	0.6	51
23	Convergence of Hypoxia and TGFÎ ² Pathways on Cell Cycle Regulation in Human Hematopoietic Stem/Progenitor Cells. PLoS ONE, 2014, 9, e93494.	1.1	49
24	The TAK1-NF-κB axis as therapeutic target for AML. Blood, 2014, 124, 3130-3140.	0.6	47
25	HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells. Cancer & Metabolism, 2019, 7, 11.	2.4	46
26	Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. ELife, 2019, 8, .	2.8	46
27	Enforced Activation of STAT5A Facilitates the Generation of Embryonic Stem-Derived Hematopoietic Stem Cells That Contribute to Hematopoiesis In Vivo. Stem Cells, 2004, 22, 1191-1204.	1.4	45
28	Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged ≥80 years. Blood Advances, 2021, 5, 2115-2122.	2.5	44
29	Reduced activation of protein kinase B, Rac, and F-actin polymerization contributes to an impairment of stromal cell–derived factor-1–induced migration of CD34+ cells from patients with myelodysplasia. Blood, 2008, 111, 359-368.	0.6	43
30	Reintroduction of C/EBPα in leukemic CD34+ stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood, 2007, 110, 1317-1325.	0.6	41
31	STAT5-induced self-renewal and impaired myelopoiesis of human hematopoietic stem/progenitor cells involves down-modulation of C/EBP1±. Blood, 2006, 107, 4326-4333.	0.6	40
32	Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Experimental Hematology, 2008, 36, 1254-1265.	0.2	35
33	Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes. Cell Reports, 2019, 26, 1059-1069.e6.	2.9	33
34	Ex Vivo Assays to Study Self-Renewal and Long-Term Expansion of Genetically Modified Primary Human Acute Myeloid Leukemia Stem Cells. Methods in Molecular Biology, 2009, 538, 287-300.	0.4	29
35	Mouse Versus Human Extrinsic Cues Dictate Transformation Potential In BCR-ABL/BMI1-Induced Leukemia In Humanized Xenograft Models. Blood, 2013, 122, 515-515.	0.6	29
36	Single-Cell STAT5 Signal Transduction Profiling in Normal and Leukemic Stem and Progenitor Cell Populations Reveals Highly Distinct Cytokine Responses. PLoS ONE, 2009, 4, e7989.	1.1	28

JAN JACOB SCHURINGA

#	Article	IF	CITATIONS
37	Aging Impairs Long-Term Hematopoietic Regeneration after Autologous Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 865-871.	2.0	28
38	Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death and Disease, 2019, 10, 421.	2.7	27
39	RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Advances, 2019, 3, 320-332.	2.5	27
40	Transcription Factor Dosage: Maximal STAT5-Induced Proliferation and Stem Cell Self-Renewal at Intermediate STAT5 Activity Levels Blood, 2007, 110, 2242-2242.	0.6	27
41	Expansion of normal and leukemic human hematopoietic stem/progenitor cells requires Rac-mediated interaction with stromal cells. Experimental Hematology, 2007, 35, 782-792.	0.2	22
42	Down-regulation of GATA1 uncouples STAT5-induced erythroid differentiation from stem/progenitor cell proliferation. Blood, 2010, 115, 4367-4376.	0.6	22
43	STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. Jak-stat, 2012, 1, 13-25.	2.2	22
44	Inhibition of the succinyl dehydrogenase complex in acute myeloid leukemia leads to a lactate-fuelled respiratory metabolic vulnerability. Nature Communications, 2022, 13, 2013.	5.8	22
45	KRASG12V Enhances Proliferation and Initiates Myelomonocytic Differentiation in Human Stem/Progenitor Cells via Intrinsic and Extrinsic Pathways. Journal of Biological Chemistry, 2011, 286, 6061-6070.	1.6	21
46	Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models. Experimental Hematology, 2017, 51, 36-46.	0.2	19
47	The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. IScience, 2021, 24, 102435.	1.9	19
48	The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis. Haematologica, 2021, 106, 3067-3078.	1.7	18
49	Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation. PLoS ONE, 2016, 11, e0153226.	1.1	16
50	Dissecting Clonal Heterogeneity in AML. Cancer Cell, 2020, 38, 782-784.	7.7	16
51	Mitochondrial Dysfunction in Human Leukemic Stem/Progenitor Cells upon Loss of RAC2. PLoS ONE, 2015, 10, e0128585.	1.1	15
52	The Glycolytic Gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nature Communications, 2022, 13, 1105.	5.8	14
53	ELMO1 Is Upregulated in AML CD34+ Stem/Progenitor Cells, Mediates Chemotaxis and Predicts Poor Prognosis in Normal Karyotype AML. PLoS ONE, 2014, 9, e111568.	1.1	12
54	Loss of ASXL1 triggers an apoptotic response in human hematopoietic stem and progenitor cells. Experimental Hematology, 2016, 44, 1188-1196.e6.	0.2	11

#	Article	IF	CITATIONS
55	Not type of induction therapy but consolidation with allogeneic hematopoietic cell transplantation determines outcome in older AML patients: A single center experience of 355 consecutive patients. Leukemia Research, 2019, 80, 33-39.	0.4	11
56	Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions. Stem Cells and Development, 2016, 25, 427-437.	1.1	10
57	BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells. PLoS ONE, 2017, 12, e0189102.	1.1	10
58	Pretransplantation MRD in Older Patients With AML After Treatment With Decitabine or Conventional Chemotherapy. Transplantation and Cellular Therapy, 2021, 27, 246-252.	0.6	9
59	Ex Vivo Assays to Study Self-Renewal, Long-Term Expansion, and Leukemic Transformation of Genetically Modified Human Hematopoietic and Patient-Derived Leukemic Stem Cells. Methods in Molecular Biology, 2014, 1185, 195-210.	0.4	9
60	RUNX1 Mutations Cause a Myeloid Differentiation Block Leading to the Formation of a Long Term Expanding CD34+/CD33+/CD45RA+/CD123+ Cell Population. Blood, 2016, 128, 1979-1979.	0.6	9
61	Modeling of Chronic Myeloid Leukemia: An Overview of <i>In Vivo</i> Murine and Human Xenograft Models. Stem Cells International, 2016, 2016, 1-12.	1.2	8
62	The Combination of Gefitinib With ATRA and ATO Induces Myeloid Differentiation in Acute Promyelocytic Leukemia Resistant Cells. Frontiers in Oncology, 2021, 11, 686445.	1.3	8
63	Distinct Gene Expression Profiling in AML in Elderly Versus Younger Patients. Blood, 2008, 112, 2546-2546.	0.6	8
64	Monocytosis and its association with clonal hematopoiesis in community-dwelling individuals. Blood Advances, 2022, 6, 4174-4184.	2.5	8
65	Reduced SLIT2 is Associated with Increased Cell Proliferation and Arsenic Trioxide Resistance in Acute Promyelocytic Leukemia. Cancers, 2020, 12, 3134.	1.7	7
66	Peripheral blood cytopenias in the aging general population and risk of incident hematological disease and mortality. Blood Advances, 2021, 5, 3266-3278.	2.5	6
67	MLL5 improves ATRA driven differentiation and promotes xenotransplant engraftment in acute promyelocytic leukemia model. Cell Death and Disease, 2021, 12, 371.	2.7	5
68	HUWE1 cooperates with RAS activation to control leukemia cell proliferation and human hematopoietic stem cells differentiation fate. Cancer Gene Therapy, 2020, 27, 830-833.	2.2	4
69	CombiFlow: Combinatorial AML-specific plasma membrane expression profiles allow longitudinal tracking of clones. Blood Advances, 2021, , .	2.5	4
70	Smart niche usage: release its fat and burn it!. Blood, 2017, 129, 1239-1240.	0.6	1
71	The Expression of NTAL and Its Protein Interactors Is Associated With Clinical Outcomes in Acute Myeloid Leukemia. Molecular and Cellular Proteomics, 2021, 20, 100091.	2.5	1
72	CombiFlow: Flow cytometry-based identification and characterization of genetically and functionally distinct AML subclones. STAR Protocols, 2021, 2, 100864.	0.5	1

JAN JACOB SCHURINGA

#	Article	IF	CITATIONS
73	Establishing Human Niche Xenograft Models For Myeloid and Lymphoid Leukemia Driven By MLL-AF9. Blood, 2013, 122, 1646-1646.	0.6	1
74	Convergence Of Hypoxia and TGFβ Pathways On Cell Cycle Regulation In Human Hematopoietic Stem/Progenitor Cells. Blood, 2013, 122, 3694-3694.	0.6	1
75	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	1.2	1
76	Expansion of Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells Requires Rac-Mediated Interaction with Stromal Cells Blood, 2005, 106, 1398-1398.	0.6	0
77	STAT5-Induced Self-Renewal and Impaired Myelopoiesis of Human Hematopoietic Stem/Progenitor Cells Involves Downmodulation of C/EBPI± Blood, 2005, 106, 268-268.	0.6	0
78	Ex-Vivo Expansion of Human Cord Blood CD34+ Cells by Overexpression of Bmi-1 Blood, 2006, 108, 1329-1329.	0.6	0
79	Dose Dependent Effects of STAT5 on Proliferation, Differentiation and Self Renewal of Hematopoietic Stem/Progenitor Cells Blood, 2006, 108, 1321-1321.	0.6	0
80	AML1/RUNX1, One of the Most Common Targets of Aberration in Acute Myeloid Leukemia as a Transcriptional Regulator of Vascular Endothelial Growth Factor (VEGFA) Blood, 2007, 110, 1618-1618.	0.6	0
81	The Polycomb Gene BMI1 Collaborates with BCR-ABL in Leukemic Transformation of Human Cord Blood CD34+ Cells Blood, 2008, 112, 1350-1350.	0.6	0
82	Inhibition of Long-Term Expansion in a Subgroup of Acute Myeloid Leukemia Samples by Dasatinib. Blood, 2008, 112, 4016-4016.	0.6	0
83	Autologous Stem Cell Transplantation Induces a Phenotypical Shift From CMP to GMP Progenitors, Reduces Clonogenic Potential and Enhances in Vitro and In Vivo Cycling Activity Defined by 18f-FLT PET Scan Blood, 2009, 114, 4473-4473.	0.6	0
84	Overexpression of Oncogenic KRAS G12V in Human Stem and Progenitor Cells Enhances Proliferation and Initiates Monocytic Differentiation Via Intrinsic and Extrinsic Pathways Blood, 2009, 114, 3975-3975.	0.6	0
85	Single-Cell STAT5 Signal Transduction Profiling in Normal and Leukemic Stem and Progenitor Cell Populations Reveals Highly Distinct Cytokine Responses Blood, 2009, 114, 2510-2510.	0.6	0
86	Identification of Human Hematopoietic Stem Cell-Specific STAT5 Target Genes Involved in Self-Renewal and Transformation Blood, 2009, 114, 568-568.	0.6	0
87	Differential Localization of RAC1 and RAC2 Reflects Their Specific Functions in Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells Blood, 2012, 120, 2302-2302.	0.6	0
88	Differential Localization Of RAC1 and RAC2 Reflects Their Specific Functions In Normal and Leukemic Human Hematopoietic Stem/Progenitor Cells. Blood, 2013, 122, 2892-2892.	0.6	0
89	Decreased PU.1 and Enhanced CITED2 Cooperate To Maintain Self-Renewal In Hematopoietic Stem/Progenitors. Blood, 2013, 122, 2411-2411.	0.6	0
90	Loss of ASXL1 Triggers an Apoptotic Response in Human Hematopoetic Stem and Progenitor Cells. Blood, 2014, 124, 4619-4619.	0.6	0

#	Article	IF	CITATIONS
91	Loss of ASXL1 Triggers an Apoptotic Response in Human Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 4107-4107.	0.6	0