Riccardo Percudani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and significance of the human DNase repertoire. Scientific Reports, 2022, 12, .	1.6	5
2	Actin-Resistant DNase1L2 as a Potential Therapeutics for CF Lung Disease. Biomolecules, 2021, 11, 410.	1.8	9
3	Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. Sensors, 2020, 20, 196.	2.1	6
4	Birth of a pathway for sulfur metabolism in early amniote evolution. Nature Ecology and Evolution, 2020, 4, 1239-1246.	3.4	3
5	Female mouse tears contain an anti-aggression pheromone. Scientific Reports, 2020, 10, 2510.	1.6	9
6	The peroxisomal SspA protein is redundant for purine utilization but essential for peroxisome localization in septal pores in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 132, 103259.	0.9	3
7	Fluorescence quantification of allantoin in biological samples by cap-immobilized allantoinase/resorcinol assay. Sensors and Actuators B: Chemical, 2018, 255, 2820-2828.	4.0	7
8	Diatom Allantoin Synthase Provides Structural Insights into Natural Fusion Protein Therapeutics. ACS Chemical Biology, 2018, 13, 2237-2246.	1.6	5
9	Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP. Scientific Reports, 2018, 8, 9016.	1.6	12
10	A Trivalent Enzymatic System for Uricolytic Therapy of HPRT Deficiency and Lesch-Nyhan Disease. Pharmaceutical Research, 2017, 34, 1477-1490.	1.7	11
11	Toward the identification of a type I toxin-antitoxin system in the plasmid DNA of dairy Lactobacillus rhamnosus. Scientific Reports, 2017, 7, 12051.	1.6	21
12	The renal phenotype of allopurinol-treated HPRT-deficient mouse. PLoS ONE, 2017, 12, e0173512.	1.1	8
13	Catalysis and Structure of Zebrafish Urate Oxidase Provide Insights into the Origin of Hyperuricemia in Hominoids. Scientific Reports, 2016, 6, 38302.	1.6	21
14	Heme binding and peroxidase activity of a secreted minicatalase. FEBS Letters, 2016, 590, 4495-4506.	1.3	2
15	The Structure and Function of a Microbial Allantoin Racemase Reveal the Origin and Conservation of a Catalytic Mechanism. Biochemistry, 2016, 55, 6421-6432.	1.2	7
16	The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme. Scientific Reports, 2015, 5, 13798.	1.6	16
17	Evolution of the selenoproteome inHelicobacter pyloriand Epsilonproteobacteria. Genome Biology and Evolution, 2015, 7, evv177.	1.1	18
18	The crystal structure of <i>HelicobacterÂpylori </i> <scp>HP</scp> 1029 highlights the functional diversity of the sialic acidâ€related <scp>DUF</scp> 386 family. FEBS Journal, 2015, 282, 3311-3322.	2.2	2

RICCARDO PERCUDANI

#	Article	IF	CITATIONS
19	Evolution of Spatially Coexpressed Families of Type-2 Vomeronasal Receptors in Rodents. Genome Biology and Evolution, 2015, 7, 272-285.	1.1	14
20	Gene Context Analysis Reveals Functional Divergence between Hypothetically Equivalent Enzymes of the Purine–Ureide Pathway. Biochemistry, 2014, 53, 735-745.	1.2	7
21	A Microbial Metagenome (<i>Leucobacter</i> sp.) in <i>Caenorhabditis</i> Whole Genome Sequences. Bioinformatics and Biology Insights, 2013, 7, BBI.S11064.	1.0	20
22	Ureidoglycolate hydrolase, amidohydrolase, lyase: how errors in biological databases are incorporated in scientific papers and vice versa. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat071-bat071.	1.4	20
23	Structural and Functional Insights into (S)-Ureidoglycine Aminohydrolase, Key Enzyme of Purine Catabolism in Arabidopsis thaliana. Journal of Biological Chemistry, 2012, 287, 18796-18805.	1.6	12
24	Probing the Evolution of Hydroxyisourate Hydrolase into Transthyretin through Active-Site Redesign. Journal of Molecular Biology, 2011, 409, 504-512.	2.0	15
25	A Recent Class of Chemosensory Neurons Developed in Mouse and Rat. PLoS ONE, 2011, 6, e24462.	1.1	29
26	Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra. Organic and Biomolecular Chemistry, 2011, 9, 5149-5155.	1.5	10
27	Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Research, 2011, 39, 5499-5512.	6.5	64
28	The Structure of Helicobacter pylori HP0310 Reveals an Atypical Peptidoglycan Deacetylase. PLoS ONE, 2011, 6, e19207.	1.1	19
29	Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	13.7	641
30	An aminotransferase branch point connects purine catabolism to amino acid recycling. Nature Chemical Biology, 2010, 6, 801-806.	3.9	26
31	Conserved Alternative Splicing of <i>Arabidopsis</i> Transthyretin-Like Determines Protein Localization and <i>S</i> -Allantoin Synthesis in Peroxisomes Â. Plant Cell, 2010, 22, 1564-1574.	3.1	72
32	Chemical Basis of Nitrogen Recovery through the Ureide Pathway: Formation and Hydrolysis of <i>S</i> -Ureidoglycine in Plants and Bacteria. ACS Chemical Biology, 2010, 5, 203-214.	1.6	46
33	The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics, 2009, 10, 273.	1.2	240
34	Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism. Biochemical Journal, 2009, 422, 265-272.	1.7	26
35	Vertebrate 5-Hydroxyisourate Hydrolase Identification, Function, Structure, and Evolutionary Relationship with Transthyretin. , 2009, , 95-108.		2
36	Structural recognition of DNA by poly(ADPâ€ribose)polymeraseâ€like zinc finger families. FEBS Journal, 2008, 275, 883-893.	2.2	28

RICCARDO PERCUDANI

#	Article	IF	CITATIONS
37	Logical Identification of an Allantoinase Analog (puuE) Recruited from Polysaccharide Deacetylases. Journal of Biological Chemistry, 2008, 283, 23295-23304.	1.6	62
38	The Structure of 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase Provides Insights into the Mechanism of Uric Acid Degradation. Journal of Biological Chemistry, 2007, 282, 18182-18189.	1.6	46
39	A threonine synthase homolog from a mammalian genome. Biochemical and Biophysical Research Communications, 2006, 350, 922-928.	1.0	15
40	Structure of Zebra fish HIUase: Insights into Evolution of an Enzyme to a Hormone Transporter. Journal of Molecular Biology, 2006, 363, 1-9.	2.0	52
41	Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nature Chemical Biology, 2006, 2, 144-148.	3.9	197
42	Nucleosome Depletion Activates Poised RNA Polymerase III at Unconventional Transcription Sites in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 29155-29164.	1.6	34
43	Ligand-binding specificity of an invertebrate (Manduca sexta) putative cellular retinoic acid binding protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 229-237.	1.1	15
44	The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins: Structure, Function and Bioinformatics, 2005, 60, 670-678.	1.5	62
45	Sequence Context Effects on Oligo(dT) Termination Signal Recognition by Saccharomyces cerevisiae RNA Polymerase III. Journal of Biological Chemistry, 2005, 280, 19551-19562.	1.6	97
46	A genomic overview of pyridoxalâ€phosphateâ€dependent enzymes. EMBO Reports, 2003, 4, 850-854.	2.0	448
47	A Composite Upstream Sequence Motif Potentiates tRNA Gene Transcription in Yeast. Journal of Molecular Biology, 2003, 333, 1-20.	2.0	54
48	Gene expression profiling in human age-related nuclear cataract. Molecular Vision, 2003, 9, 538-48.	1.1	39
49	Intragenic Promoter Adaptation and Facilitated RNA Polymerase III Recycling in the Transcription of SCR1, the 7SL RNA Gene ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 6903-6914.	1.6	43
50	A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genetics and Biology, 2002, 36, 22-34.	0.9	61
51	Gene expression profile of Vitamin D3 treated HL60 cells shows an incomplete molecular phenotypic conversion to monocytes. Cell Death and Differentiation, 2002, 9, 1185-1195.	5.0	12
52	A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO Journal, 2001, 20, 5079-5090.	3.5	72
53	Restricted wobble rules for eukaryotic genomes. Trends in Genetics, 2001, 17, 133-135.	2.9	39
54	TFIIIC-independent in vitro transcription of yeast tRNA genes 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 299, 601-613.	2.0	60

#	Article	IF	CITATIONS
55	Molecular Phylogeny of Truffles (Pezizales: Terfeziaceae, Tuberaceae) Derived from Nuclear rDNA Sequence Analysis. Molecular Phylogenetics and Evolution, 1999, 13, 169-180.	1.2	85
56	Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Molecular Biology and Evolution, 1999, 16, 1752-1762.	3.5	38
57	A Novel Algorithm for the Search of 5S rRNA Genes in DNA Databases: Comparison with Other Methods and Identification of New Potential 5S rRNA Genes. DNA Sequence, 1997, 7, 165-177.	0.7	2
58	Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 268, 322-330.	2.0	277
59	A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation Plant Cell, 1996, 8, 69-80.	3.1	87
60	A Maize Gene Encoding an NADPH Binding Enzyme Highly Homologous to Isoflavone Reductases Is Activated in Response to Sulfur Starvation. Plant Cell, 1996, 8, 69.	3.1	18