
Parimal Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653966/publications.pdf Version: 2024-02-01

Ολοιμαι Κλο

#	Article	IF	CITATIONS
1	Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 <i>via</i> RNAâ€dependent RNA polymerase (RdRp) inhibition: an <i>in-silico</i> analysis. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6249-6264.	3.5	101
2	PRIMO: A Transferable Coarse-Grained Force Field for Proteins. Journal of Chemical Theory and Computation, 2013, 9, 3769-3788.	5.3	87
3	Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3649-3661.	3.5	62
4	Origin of Decrease in Potency of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Compared to HIV-1 Protease. Journal of Physical Chemistry B, 2012, 116, 2605-2614.	2.6	53
5	Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Journal of Computer-Aided Molecular Design, 2012, 26, 215-232.	2.9	49
6	Importance of Polar Solvation and Configurational Entropy for Design of Antiretroviral Drugs Targeting HIV-1 Protease. Journal of Physical Chemistry B, 2013, 117, 5793-5805.	2.6	48
7	Recent Advances in Transferable Coarse-Grained Modeling of Proteins. Advances in Protein Chemistry and Structural Biology, 2014, 96, 143-180.	2.3	46
8	Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. ACS Omega, 2019, 4, 17404-17416.	3.5	46
9	Importance of Polar Solvation for Cross-Reactivity of Antibody and Its Variants with Steroids. Journal of Physical Chemistry B, 2011, 115, 7661-7669.	2.6	38
10	Computational Investigation of Structural Dynamics of SARS-CoV-2 Methyltransferase-Stimulatory Factor Heterodimer nsp16/nsp10 Bound to the Cofactor SAM. Frontiers in Molecular Biosciences, 2020, 7, 590165.	3.5	33
11	Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS Omega, 2020, 5, 3932-3942.	3.5	33
12	Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 988-1003.	3.5	32
13	An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chemical Physics Letters, 2021, 763, 138193.	2.6	32
14	Transferring the PRIMO Coarse-Grained Force Field to the Membrane Environment: Simulations of Membrane Proteins and Helix–Helix Association. Journal of Chemical Theory and Computation, 2014, 10, 3459-3472.	5.3	31
15	Mutation-Induced Loop Opening and Energetics for Binding of Tamiflu to Influenza N8 Neuraminidase. Journal of Physical Chemistry B, 2012, 116, 6137-6149.	2.6	30
16	Dispersion Terms and Analysis of Size- and Charge Dependence in an Enhanced Poissonâ^'Boltzmann Approach. Journal of Physical Chemistry B, 2007, 111, 8910-8918.	2.6	29
17	Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields. Journal of Chemical Theory and Computation, 2017, 13, 5753-5765.	5.3	29
18	Investigating specificity of the anti-hypertensive inhibitor WNK463 against With-No-Lysine kinase family isoforms via multiscale simulations. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1306-1321.	3.5	28

Parimal Kar

#	Article	IF	CITATIONS
19	Identification of Potential Inhibitors against Epstein–Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chemical Neuroscience, 2021, 12, 3060-3072.	3.5	28
20	Energetics of Mutation-Induced Changes in Potency of Lersivirine against HIV-1 Reverse Transcriptase. Journal of Physical Chemistry B, 2012, 116, 6269-6278.	2.6	26
21	Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2020, 39, 1-18.	3.5	26
22	Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding. PLoS ONE, 2016, 11, e0159074.	2.5	25
23	Systematic study of the boundary composition in Poisson Boltzmann calculations. Journal of Computational Chemistry, 2007, 28, 2538-2544.	3.3	23
24	Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from <i>Peste des petits ruminants virus</i> via Gaussian accelerated molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2302-2315.	3.5	22
25	Microcanonical replica exchange molecular dynamics simulation of proteins. Physical Review E, 2009, 80, 056703.	2.1	20
26	Theoretical mimicry of biomembranes. FEBS Letters, 2009, 583, 1909-1915.	2.8	20
27	Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6556-6568.	3.5	20
28	A comparative study of structural and conformational properties of WNK kinase isoforms bound to an inhibitor: insights from molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1400-1415.	3.5	19
29	Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 7343-7358.	2.8	19
30	Elucidating specificity of an allosteric inhibitor WNK476 among Withâ€No‣ysine kinase isoforms using molecular dynamic simulations. Chemical Biology and Drug Design, 2021, 98, 405-420.	3.2	13
31	Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. Chemometrics and Intelligent Laboratory Systems, 2021, 217, 104394.	3.5	13
32	Unraveling the Molecular Mechanism of Recognition of Human Interferon-Stimulated Gene Product 15 by Coronavirus Papain-Like Proteases: A Multiscale Simulation Study. Journal of Chemical Information and Modeling, 2021, , .	5.4	12
33	Structure-based design and synthesis of a novel long-chain 4′′-alkyl ether derivative of EGCG as potent EGFR inhibitor: <i>in vitro</i> and <i>in silico</i> studies. RSC Advances, 2022, 12, 17821-17836.	3.6	12
34	Unraveling the Molecular Mechanism of Recognition of Selected Next-Generation Antirheumatoid Arthritis Inhibitors by Janus Kinase 1. ACS Omega, 2022, 7, 6195-6209.	3.5	11
35	The Evolutionarily Conserved C-terminal Domains in the Mammalian Retinoblastoma Tumor Suppressor Family Serve as Dual Regulators of Protein Stability and Transcriptional Potency. Journal of Biological Chemistry, 2015, 290, 14462-14475.	3.4	10
36	Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4815-4831.	3.5	9

Parimal Kar

#	Article	IF	CITATIONS
37	A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Computers in Biology and Medicine, 2022, 148, 105856.	7.0	9
38	Decoding the Host–Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2022, 126, 387-402.	2.6	8
39	Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3305-3320.	3.5	8
40	Effect of Sulfation on the Conformational Dynamics of Dermatan Sulfate Glycosaminoglycan: A Gaussian Accelerated Molecular Dynamics Study. Journal of Physical Chemistry B, 2022, 126, 3852-3866.	2.6	7
41	Investigating potency of TMC-126 against wild-type and mutant variants of HIV-1 protease: a molecular dynamics and free energy study. SAR and QSAR in Environmental Research, 2021, 32, 941-962.	2.2	6
42	Plant-derived active compounds as a potential nucleocapsid protein inhibitor of SARS-CoV-2: an <i>in-silico</i> study. Journal of Biomolecular Structure and Dynamics, 2023, 41, 4770-4785.	3.5	6
43	Ethyl Pyruvate as a Potential Defense Intervention against Cytokine Storm in COVID-19?. ACS Omega, 2021, 6, 7754-7760.	3.5	5
44	Discovery of potential competitive inhibitors against With-No-Lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations. SAR and QSAR in Environmental Research, 2022, 33, 63-87.	2.2	4
45	Phosphorylation-Induced Conformational Dynamics and Inhibition of Janus Kinase 1 by Suppressors of Cytokine Signaling 1. Journal of Physical Chemistry B, 2022, 126, 3224-3239.	2.6	4
46	Comparative Structural Dynamics of Isoforms of Helicobacter pylori Adhesin BabA Bound to Lewis b Hexasaccharide via Multiple Replica Molecular Dynamics Simulations. Frontiers in Molecular Biosciences, 2022, 9, 852895.	3.5	4
47	Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an <i>in</i> - <i>silico</i> study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10403-10421.	3.5	3
48	Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. Journal of Physical Chemistry B, 2021, 125, 9115-9129.	2.6	3
49	Identification of novel efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and molecular dynamics approaches. Computational Biology and Chemistry, 2022, 98, 107682.	2.3	3
50	Role of Doxorubicin on the Loading Efficiency of ICG within Silk Fibroin Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 3054-3065.	5.2	1
51	PRIMO-M: An Extension of the Coarse-Grained Force Field Primo to the Membrane Environment. Biophysical Journal, 2014, 106, 462a.	0.5	0