
Tracey D Bradshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130067.	1.1	5
2	Is oral lipid-based delivery for drug targeting to the brain feasible?. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 112-122.	2.0	8
3	Pro-inflammatory effects of silver nanoparticles in the intestine. Archives of Toxicology, 2022, 96, 1551-1571.	1.9	6
4	Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 2022, 7, 21473-21482.	1.6	4
5	Modulation of the acidity of the 8-carboxamide group in the temozolomide family of antitumor imidazo[5,1-d][1,2,3,5]tetrazines. Arkivoc, 2021, 2020, 36-45.	0.3	0
6	Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 2021, 214, 113244.	2.6	10
7	Novel Semi-Synthetic Cu (II)–Cardamonin Complex Exerts Potent Anticancer Activity against Triple-Negative Breast and Pancreatic Cancer Cells via Inhibition of the Akt Signaling Pathway. Molecules, 2021, 26, 2166.	1.7	8
8	Chemosensitization of Temozolomide-Resistant Pediatric Diffuse Midline Glioma Using Potent Nanoencapsulated Forms of a N(3)-Propargyl Analogue. ACS Applied Materials & Interfaces, 2021, 13, 35266-35280.	4.0	15
9	Concurrent Reactive Oxygen Species Generation and Aneuploidy Induction Contribute to Thymoquinone Anticancer Activity. Molecules, 2021, 26, 5136.	1.7	10
10	Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications. Nano Express, 2021, 2, 040005.	1.2	3
11	Codrug Approach for the Potential Treatment of EML4-ALK Positive Lung Cancer. ACS Medicinal Chemistry Letters, 2020, 11, 316-321.	1.3	3
12	The antitumour activity of 2â€(4â€aminoâ€3â€methylphenyl)â€5â€fluorobenzothiazole in human gastric cancer models is mediated by AhR signalling. Journal of Cellular and Molecular Medicine, 2020, 24, 1750-1759.	1.6	7
13	The natural alkaloid Jerantinine B has activity in acute myeloid leukemia cells through a mechanism involving c-Jun. BMC Cancer, 2020, 20, 629.	1.1	7
14	Delivery of Temozolomide and N3-Propargyl Analog to Brain Tumors Using an Apoferritin Nanocage. ACS Applied Materials & Interfaces, 2020, 12, 12609-12617.	4.0	24
15	New Treatments in Renal Cancer: The AhR Ligands. International Journal of Molecular Sciences, 2020, 21, 3551.	1.8	14
16	C8-Substituted Imidazotetrazine Analogs Overcome Temozolomide Resistance by Inducing DNA Adducts and DNA Damage. Frontiers in Oncology, 2019, 9, 485.	1.3	17
17	Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells. Nanotechnology, 2019, 30, 505102.	1.3	4
18	Exploring New Molecular Targets in Advanced Ovarian Cancer: The Aryl Hydrocarbon Receptor (AhR) and Antitumor Benzothiazole Ligands as Potential Therapeutic Candidates. , 2019, , .		0

#	Article	IF	CITATIONS
19	Development of novel apoferritin formulations for antitumour benzothiazoles. Cancer Reports, 2019, 2, e1155.	0.6	14
20	Tripodal Oâ€Nâ€O <i>Bis</i> â€Phenolato Amine Titanium(IV) Complexes Show High in vitro Antiâ€Cancer Activity. European Journal of Inorganic Chemistry, 2019, 2019, 2774-2780.	1.0	8
21	Listeria innocua Dps as a nanoplatform for bioluminescence based photodynamic therapy utilizing Gaussia princeps luciferase and zinc protoporphyrin IX. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102005.	1.7	13
22	A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. International Journal of Pharmaceutics, 2019, 565, 151-161.	2.6	20
23	Cardiac glycoside cerberin exerts anticancer activity through PI3K/AKT/mTOR signal transduction inhibition. Cancer Letters, 2019, 453, 57-73.	3.2	37
24	Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery. International Journal of Nanomedicine, 2019, Volume 14, 9525-9534.	3.3	7
25	Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells. RSC Advances, 2019, 9, 36699-36706.	1.7	3
26	In search of effective therapies to overcome resistance to Temozolomide in brain tumours. , 2019, 2, 1018-1031.		7
27	Self-Assembling Benzothiazole-Based Gelators: A Mechanistic Understanding of in Vitro Bioactivation and Gelation. Molecular Pharmaceutics, 2018, 15, 1578-1586.	2.3	3
28	Nucleosideâ€Based Selfâ€Assembling Drugs for Localized Drug Delivery. ChemMedChem, 2018, 13, 1098-1101.	1.6	5
29	Discovery of a highly active anticancer analogue of cardamonin that acts as an inducer of caspase-dependent apoptosis and modulator of the mTOR pathway. Fìtoterapìâ, 2018, 125, 161-173.	1.1	27
30	Synthesis and growth-inhibitory activities of imidazo[5,1- <i>d</i>]-1,2,3,5-tetrazine-8-carboxamides related to the anti-tumour drug temozolomide, with appended silicon, benzyl and heteromethyl groups at the 3-position. MedChemComm, 2018, 9, 545-553.	3.5	6
31	Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group. Cancer Chemotherapy and Pharmacology, 2018, 81, 427-441.	1.1	15
32	Temozolomide analog PMX 465 downregulates MGMT expression in HCT116 colorectal carcinoma cells. Journal of Cellular Biochemistry, 2018, 119, 5350-5358.	1.2	4
33	MBRS-46. JERANTININE: A NOVEL TUMOUR-SPECIFIC ALKALOID FOR THE TREATMENT OF PAEDIATRIC MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i138-i138.	0.6	1
34	Autophagy modulation: a prudent approach in cancer treatment?. Cancer Chemotherapy and Pharmacology, 2018, 82, 913-922.	1.1	64
35	Synthesis of Highly Substituted 1,2â€Ðiazetidinâ€3â€ones, Smallâ€Ring Scaffolds for Drug Discovery. Chemistry - A European Journal, 2018, 24, 8325-8330.	1.7	9
36	Sustainable Syntheses of (â^')-Jerantinines A & E and Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Scientific Reports, 2018, 8, 10617.	1.6	10

TRACEY D BRADSHAW

#	Article	IF	CITATIONS
37	Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. Journal of Controlled Release, 2018, 286, 10-19.	4.8	41
38	Frontispiece: Synthesis of Highly Substituted 1,2-Diazetidin-3-ones, Small-Ring Scaffolds for Drug Discovery. Chemistry - A European Journal, 2018, 24, .	1.7	0
39	Design and Elaboration of a Tractable Tricyclic Scaffold To Synthesize Druglike Inhibitors of Dipeptidyl Peptidase-4 (DPP-4), Antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and Highly Potent and Selective Phosphoinositol-3 Kinase δ (PI3KÎ) Inhibitors. Journal of Medicinal Chemistry, 2017, 60. 1534-1554.	2.9	7
40	Using titanium complexes to defeat cancer: the view from the shoulders of titans. Chemical Society Reviews, 2017, 46, 1040-1051.	18.7	91
41	Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1). Scientific Reports, 2017, 7, 42504.	1.6	45
42	In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells. Journal of Cellular Biochemistry, 2017, 118, 4526-4535.	1.2	16
43	Development of a series of bis-triazoles as G-quadruplex ligands. RSC Advances, 2017, 7, 47297-47308.	1.7	10
44	Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway. PLoS ONE, 2017, 12, e0170551.	1.1	50
45	Antitumor imidazo[5,1-d]-1,2,3,5-tetrazines: compounds modified at the 3-position overcome resistance in human glioblastoma cell lines. MedChemComm, 2016, 7, 2332-2343.	3.5	15
46	Enantiopure titanocene complexes – direct evidence for paraptosis in cancer cells. Metallomics, 2016, 8, 286-297.	1.0	19
47	Horner–Wadsworth–Emmons approach to piperlongumine analogues with potent anti-cancer activity. Organic and Biomolecular Chemistry, 2016, 14, 7585-7593.	1.5	24
48	Fistulopsines A and B antiproliferative septicine-type alkaloids from Ficus fistulosa. Phytochemistry Letters, 2016, 15, 136-141.	0.6	16
49	In vitro anticancer properties and biological evaluation of novel natural alkaloid jerantinine B. Cancer Letters, 2016, 370, 185-197.	3.2	41
50	An Apoferritinâ€based Drug Delivery System for the Tyrosine Kinase Inhibitor Gefitinib. Advanced Healthcare Materials, 2015, 4, 2816-2821.	3.9	55
51	Asymmetric Pentafulvene Carbometalation—Access to Enantiopure Titanocene Dichlorides of Biological Relevance. Angewandte Chemie - International Edition, 2015, 54, 14179-14182.	7.2	13
52	N3-Substituted Temozolomide Analogs Overcome Methylguanine-DNA Methyltransferase and Mismatch Repair Precipitating Apoptotic and Autophagic Cancer Cell Death. Oncology, 2015, 88, 28-48.	0.9	23
53	Ibogan, Tacaman, and Cytotoxic Bisindole Alkaloids from <i>Tabernaemontana</i> . Cononusine, an Iboga Alkaloid with Unusual Incorporation of a Pyrrolidone Moiety. Journal of Natural Products, 2015, 78, 1129-1138.	1.5	51
54	In Vitro Antitumor Mechanism of (<i>E</i>)- <i>N</i> /i>-(2-methoxy-5-(((2,4,6-trimethoxystyryl)sulfonyl)methyl)pyridin-3-yl)methanesulfonamide. Molecular Pharmacology, 2015, 87, 18-30.	1.0	21

TRACEY D BRADSHAW

#	Article	IF	CITATIONS
55	Antitumour benzothiazoles. Part 32: DNA adducts and double strand breaks correlate with activity; synthesis of 5F203 hydrogels for local delivery. Bioorganic and Medicinal Chemistry, 2015, 23, 6891-6899.	1.4	39
56	Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget, 2014, 5, 7691-7704.	0.8	48
57	Antiproliferation and induction of caspase-8-dependent mitochondria-mediated apoptosis by β-tocotrienol in human lung and brain cancer cell lines. Biomedicine and Pharmacotherapy, 2014, 68, 1105-1115.	2.5	29
58	Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter, 2014, 10, 237-256.	1.2	317
59	Novel antitumour indole alkaloid, Jerantinine A, evokes potent G2/M cell cycle arrest targeting microtubules. Investigational New Drugs, 2014, 32, 838-850.	1.2	54
60	A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5, 375-385.	0.8	73
61	6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor Î ³ (PPARÎ ³). Cancer Letters, 2013, 336, 127-139.	3.2	85
62	Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. Journal of Materials Chemistry B, 2013, 1, 6254.	2.9	16
63	Cuprate Addition to a 6‣ubstituted Pentafulvene – Preparation of <i>sec</i> â€Alkyl‣ubstituted Titanocene Dichlorides and Their Biological Activity. European Journal of Organic Chemistry, 2013, 2013, 3997-4007.	1.2	9
64	Biomarkers of sensitivity to potent and selective antitumor 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F2O3) in ovarian cancer. Journal of Cellular Biochemistry, 2013, 114, 2392-2404.	1.2	21
65	Paramagnetic, Nearâ€Infrared Fluorescent Mnâ€Doped PbS Colloidal Nanocrystals. Particle and Particle Systems Characterization, 2013, 30, 945-949.	1.2	17
66	Antioxidant and Cytoprotective Effects of an Ethanol Extract of Acalypha wilkesiana var. macafeana from Malaysia. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	1
67	Cytotoxic Constituents of <i>Pachyrhizus Tuberosus</i> from Peruvian Amazon. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	4
68	Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon. Natural Product Communications, 2013, 8, 1423-6.	0.2	4
69	ZJU-6, a novel derivative of Erianin, shows potent anti-tubulin polymerisation and anti-angiogenic activities. Investigational New Drugs, 2012, 30, 1899-1907.	1.2	16
70	The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. Journal of Materials Chemistry, 2012, 22, 660-665.	6.7	14
71	Temozolomide: Mechanisms of Action, Repair and Resistance. Current Molecular Pharmacology, 2012, 5, 102-114.	0.7	644
72	Structure of <i>Mycobacterium tuberculosis</i> thioredoxin in complex with quinol inhibitor PMX464. Protein Science, 2011, 20, 210-215.	3.1	11

#	Article	IF	CITATIONS
73	CYP2S1 and CYP2W1 Mediate 2-(3,4-Dimethoxyphenyl)-5-Fluorobenzothiazole (GW-610, NSC 721648) Sensitivity in Breast and Colorectal Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 1982-1992.	1.9	57
74	Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radical Biology and Medicine, 2010, 48, 98-111.	1.3	131
75	Synthesis of antitumour (1H-1,2,3-triazol-4-yl)-4-hydroxycyclohexa-2,5-dien-1-ones by copper-catalysed Huisgen cycloadditions. Organic and Biomolecular Chemistry, 2010, 8, 2078.	1.5	9
76	Preclinical Toxicokinetic Evaluation of Phortress [2-(4-Amino-3-Methylphenyl)-5-Fluorobenzothiazole Lysylamide Dihydrochloride] in Two Rodent Species. Pharmacology, 2009, 83, 99-109.	0.9	15
77	2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole is a ligand and shows species-specific partial agonism of the aryl hydrocarbon receptor. Toxicology and Applied Pharmacology, 2009, 237, 102-110.	1.3	29
78	The Biocompatibility of Apoferritinâ€Encapsulated PbS Quantum Dots. Small, 2009, 5, 1738-1741.	5.2	42
79	Structure–activity analysis of 2′-modified cinnamaldehyde analogues as potential anticancer agents. Biochemical and Biophysical Research Communications, 2009, 387, 741-747.	1.0	22
80	Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clinical Toxicology, 2009, 47, 632-642.	0.8	49
81	The characterisation of flavone-DNA isoform interactions as a basis for anticancer drug development. Anticancer Research, 2009, 29, 2273-83.	0.5	20
82	Mechanisms of acquired resistance to 2-(4-Amino-3-methylphenyl)benzothiazole in breast cancer cell lines. Breast Cancer Research and Treatment, 2008, 110, 57-68.	1.1	30
83	Synthesis and Biological Properties of Benzothiazole, Benzoxazole, and Chromen-4-one Analogues of the Potent Antitumor Agent 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). Journal of Medicinal Chemistry, 2008, 51, 5135-5139.	2.9	296
84	Synthesis and antitumour evaluation of novel 2-phenylbenzimidazoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 641-647.	2.5	23
85	Thioredoxin reductase inhibition by antitumor quinols: a quinol pharmacophore effect correlating to antiproliferative activity. FASEB Journal, 2008, 22, 2072-2083.	0.2	51
86	Cannabinoid receptor agonists are mitochondrial inhibitors: A unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochemical and Biophysical Research Communications, 2007, 364, 131-137.	1.0	119
87	Quinols As Novel Therapeutic Agents. 7.1Synthesis of Antitumor 4-[1-(Arylsulfonyl-1H-indol-2-yl)]-4-hydroxycyclohexa-2,5-dien-1-ones by Sonogashira Reactions. Journal of Medicinal Chemistry, 2007, 50, 1707-1710.	2.9	39
88	Antitumor quinols: Role of glutathione in modulating quinol-induced apoptosis and identification of putative cellular protein targets. Biochemical and Biophysical Research Communications, 2006, 346, 242-251.	1.0	18
89	Structural Studies on Bioactive Compounds. 40.1Synthesis and Biological Properties of Fluoro-, Methoxyl-, and Amino-Substituted 3-Phenyl-4H-1-benzopyran-4-ones and a Comparison of Their Antitumor Activities with the Activities of Related 2-Phenylbenzothiazoles. Journal of Medicinal Chemistry. 2006, 49, 3973-3981.	2.9	73
90	Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones (â€~quinols'). Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5005-5008.	1.0	103

TRACEY D BRADSHAW

#	Article	IF	CITATIONS
91	Antitumor Benzothiazoles. 26.12-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a Simple Fluorinated 2-Arylbenzothiazole, Shows Potent and Selective Inhibitory Activity against Lung, Colon, and Breast Cancer Cell Lines. Journal of Medicinal Chemistry, 2006, 49, 179-185.	2.9	421
92	Antitubercular Properties of Substituted Hydroxycyclohexadienones. Letters in Drug Design and Discovery, 2006, 3, 419-423.	0.4	4
93	Elucidation of Thioredoxin as a Molecular Target for Antitumor Quinols. Cancer Research, 2005, 65, 3911-3919.	0.4	79
94	Quinols as Novel Therapeutic Agents. 2.14-(1-Arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2,5-dien-1-ones and Related Agents as Potent and Selective Antitumor Agents. Journal of Medicinal Chemistry, 2005, 48, 639-644.	2.9	53
95	FLUORINATED 2-(4-AMINO-3-METHYLPHENYL)BENZOTHIAZOLES INDUCE CYP1A1 EXPRESSION, BECOME METABOLIZED, AND BIND TO MACROMOLECULES IN SENSITIVE HUMAN CANCER CELLS. Drug Metabolism and Disposition, 2004, 32, 1392-1401.	1.7	48
96	The Experimental Antitumor Agents Phortress and Doxorubicin are Equiactive Against Human-Derived Breast Carcinoma Xenograft Models. Breast Cancer Research and Treatment, 2004, 87, 97-107.	1.1	40
97	In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Molecular Cancer Therapeutics, 2004, 3, 1565-75.	1.9	58
98	Gene Expression Profiling of 2-(4-Aminophenyl)benzothiazole-resistant MCF-7 Cells Using cDNA Microarrays. Cancer Genomics and Proteomics, 2004, 1, 215-224.	1.0	1
99	Induction of apoptosis without redox catastrophe by thioredoxin-inhibitory compounds. Biochemical Pharmacology, 2003, 66, 1695-1705.	2.0	35
100	Antitumour benzothiazoles. Part 20: 3′-Cyano and 3′-Alkynyl-Substituted 2-(4′-Aminophenyl)benzothiazoles as new potent and selective analogues. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 471-474.	1.0	112
101	4-Substituted 4-Hydroxycyclohexa-2,5-dien-1-ones with Selective Activities against Colon and Renal Cancer Cell Lines. Journal of Medicinal Chemistry, 2003, 46, 532-541.	2.9	95
102	Antitumor benzothiazoles. Frontier molecular orbital analysis predicts bioactivation of 2-(4-aminophenyl)benzothiazoles to reactive intermediates by cytochrome P4501A1Part 23. For part 22 see Ref. 1 Organic and Biomolecular Chemistry, 2003, 1, 493-497.	1.5	56
103	Aryl Hydrocarbon Receptor Mediates Sensitivity of MCF-7 Breast Cancer Cells to Antitumor Agent 2-(4-Amino-3-methylphenyl) Benzothiazole. Molecular Pharmacology, 2002, 61, 13-19.	1.0	90
104	Preclinical evaluation of amino acid prodrugs of novel antitumor 2-(4-amino-3-methylphenyl)benzothiazoles. Molecular Cancer Therapeutics, 2002, 1, 239-46.	1.9	53
105	Antitumour Benzothiazoles. Part 15: The Synthesis and Physico-Chemical Properties of 2-(4-Aminophenyl)benzothiazole Sulfamate Salt Derivatives. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1093-1095.	1.0	32
106	Antitumor Benzothiazoles. 14.1Synthesis and in Vitro Biological Properties of Fluorinated 2-(4-Aminophenyl)benzothiazoles. Journal of Medicinal Chemistry, 2001, 44, 1446-1455.	2.9	332
107	Antitumour benzothiazoles. Part 10: The synthesis and antitumour activity of benzothiazole substituted quinol derivatives. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 513-515.	1.0	92
108	Antitumor Benzothiazoles. 8.1Synthesis, Metabolic Formation, and Biological Properties of theC- andN-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazolesâ^‡. Journal of Medicinal Chemistry, 1999, 42, 4172-4184.	2.9	225

#	Article	IF	CITATIONS
109	Antitumor Benzothiazoles. 7. Synthesis of 2-(4-Acylaminophenyl)benzothiazoles and Investigations into the Role of Acetylation in the Antitumor Activities of the Parent Amines. Journal of Medicinal Chemistry, 1999, 42, 381-392.	2.9	113
110	Antitumor Benzothiazoles. 3.1Synthesis of 2-(4-Aminophenyl)benzothiazoles and Evaluation of Their Activities against Breast Cancer Cell LinesinVitroandin Vivo. Journal of Medicinal Chemistry, 1996, 39, 3375-3384.	2.9	354
111	The role of protein kinase C isoenzymes in the growth inhibition caused by bryostatin 1 in human A549 lung and MCF-7 breast carcinoma cells. International Journal of Cancer, 1994, 56, 585-592.	2.3	64
112	Modulation by staurosporine of phorbol-ester-induced effects on growth and protein kinase C localization in a549 human lung-carcinoma cells. International Journal of Cancer, 1992, 51, 144-148.	2.3	21
113	The role of protein kinase C and the phosphatidylinositol cycle in multidrug resistance in human ovarian cancer cells. Biochemical Pharmacology, 1991, 42, 1427-1432.	2.0	15
114	The effect of fetal calf serum on growth arrest caused by activators of protein kinase C. International Journal of Cancer, 1991, 47, 929-932.	2.3	7
115	Sterically hindered analogues of diacylglycerols. synthesis, binding to the phorbol ester receptor and metabolism in a549 human lung carcinoma cells. International Journal of Cancer, 1989, 44, 320-324.	2.3	4
116	Target-Directed Drug Discovery. , 0, , 223-243.		3