James Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653513/publications.pdf

Version: 2024-02-01

1039880 1058333 16 922 9 14 citations h-index g-index papers 17 17 17 1525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Machine Learning Force Fields: Construction, Validation, and Outlook. Journal of Physical Chemistry C, 2017, 121, 511-522.	1.5	368
2	TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY. Astrophysical Journal, Supplement Series, 2014, 213, 34.	3.0	208
3	A universal strategy for the creation of machine learning-based atomistic force fields. Npj Computational Materials, 2017, 3, .	3.5	188
4	A study of adatom ripening on an Al $(1\ 1\ 1)$ surface with machine learning force fields. Computational Materials Science, 2017, 129, 332-335.	1.4	33
5	General Atomic Neighborhood Fingerprint for Machine Learning-Based Methods. Journal of Physical Chemistry C, 2019, 123, 15859-15866.	1.5	33
6	Iterative-Learning Strategy for the Development of Application-Specific Atomistic Force Fields. Journal of Physical Chemistry C, 2019, 123, 20715-20722.	1.5	20
7	Machine learning models for the prediction of energy, forces, and stresses for Platinum. Computational Materials Science, 2020, 174, 109483.	1.4	17
8	Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy. Npj Computational Materials, 2022, 8, .	3.5	13
9	Efficient and universal characterization of atomic structures through a topological graph order parameter. Npj Computational Materials, 2022, 8, .	3.5	11
10	A comprehensive computational study of adatom diffusion on the aluminum (1†0†0) surface. Computational Materials Science, 2019, 158, 353-358.	1.4	9
11	Nanoscale Modeling of Surface Phenomena in Aluminum Using Machine Learning Force Fields. Journal of Physical Chemistry C, 2020, 124, 22127-22136.	1.5	9
12	Multiscale Modeling of Defect Phenomena in Platinum Using Machine Learning of Force Fields. Jom, 2020, 72, 4346-4358.	0.9	5
13	Predicting the dynamic behavior of the mechanical properties of platinum with machine learning. Journal of Chemical Physics, 2020, 152, 224709.	1.2	4
14	Amorphization of Pseudocapacitive Tâ^'Nb $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries and Supercaps, 0, , .	2.4	3
15	Cover Feature: Amorphization of Pseudocapacitive Tâ^'Nb ₂ O ₅ Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures (Batteries & Dipercaps) Tj ETQq1 1 (0. 7284 314 r	gBT /Overlo
16	Quantifying the atomistic free-volume morphology of materials with graph theory. Computational Materials Science, 2022, 213, 111623.	1.4	0