Hendrik SchĤfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653396/publications.pdf Version: 2024-02-01

HENDOLK SCHÄDED

#	Article	IF	CITATIONS
1	CS2 increasing CH4-derived carbon emissions and active microbial diversity in lake sediments. Environmental Research, 2022, 208, 112678.	7.5	8
2	Seasonal and Zonal Succession of Bacterial Communities in North Sea Salt Marsh Sediments. Microorganisms, 2022, 10, 859.	3.6	7
3	Contrasting Responses of Rhizosphere Bacterial, Fungal, Protist, and Nematode Communities to Nitrogen Fertilization and Crop Genotype in Field Grown Oilseed Rape (Brassica napus). Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	8
4	Tree phyllospheres are a habitat for diverse populations of <scp>CO</scp> â€oxidizing bacteria. Environmental Microbiology, 2021, 23, 6309-6327.	3.8	5
5	Longitudinal dispersion of microplastics in aquatic flows using fluorometric techniques. Water Research, 2020, 170, 115337.	11.3	45
6	Bedform characteristics and biofilm community development interact to modify hyporheic exchange. Science of the Total Environment, 2020, 749, 141397.	8.0	23
7	Seasonal Changes in Microbial Dissolved Organic Sulfur Transformations in Coastal Waters. Microorganisms, 2020, 8, 337.	3.6	7
8	Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus. Frontiers in Microbiology, 2019, 10, 1132.	3.5	11
9	Towards a systematic understanding of structure–function relationship of dimethylsulfoniopropionateâ€catabolizing enzymes. Molecular Microbiology, 2019, 111, 1399-1403.	2.5	1
10	Microbial Cycling of Methanethiol. Current Issues in Molecular Biology, 2019, 33, 173-182.	2.4	15
11	Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nature Genetics, 2018, 50, 120-129.	21.4	86
12	Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME Journal, 2018, 12, 145-160.	9.8	62
13	Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018, 18, 1106-1122.	3.0	8
14	DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods in Molecular Biology, 2017, 1539, 57-74.	0.9	21
15	A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environmental Microbiology, 2016, 18, 2754-2766.	3.8	63
16	O ₂ â€independent demethylation of trimethylamine <i>N</i> â€oxide by Tdm of <i>Methylocella silvestris</i> . FEBS Journal, 2016, 283, 3979-3993.	4.7	7
17	Spatial and temporal variability in the potential of river water biofilms to degrade p-nitrophenol. Chemosphere, 2016, 164, 355-362.	8.2	5
18	Culture-dependent and culture-independent methods reveal diverse methylotrophic communities in terrestrial environments. Archives of Microbiology, 2016, 198, 17-26.	2.2	12

Hendrik SchÄper

#	Article	IF	CITATIONS
19	SIP metagenomics identifies uncultivated <i>Methylophilaceae</i> as dimethylsulphide degrading bacteria in soil and lake sediment. ISME Journal, 2015, 9, 2336-2348.	9.8	66
20	Characterization of <i>para</i> -Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing. Applied and Environmental Microbiology, 2015, 81, 6890-6900.	3.1	33
21	Refinement of biodegradation tests methodologies and the proposed utility of new microbial ecology techniques. Ecotoxicology and Environmental Safety, 2015, 111, 9-22.	6.0	91
22	Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4268-4273.	7.1	264
23	Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. Frontiers in Microbiology, 2014, 5, 506.	3.5	48
24	Identification and characterization of trimethylamine <scp><i>N</i></scp> â€oxide (<scp>TMAO</scp>) demethylase and <scp>TMAO</scp> permease in <scp><i>M</i></scp> <i>ethylocella silvestris</i> â€ <scp>BL</scp> 2. Environmental Microbiology, 2014, 16, 3318-3330.	3.8	18
25	Stable Isotope Probing to Study Functional Components of Complex Microbial Ecosystems. Methods in Molecular Biology, 2014, 1096, 169-180.	0.9	4
26	Transformations of Dimethylsulfide. Metal lons in Life Sciences, 2014, 14, 279-313.	2.8	25
27	Non-UV Light Influences the Degradation Rate of Crop Protection Products. Environmental Science & Technology, 2013, 47, 130712083104003.	10.0	5
28	Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface. PLoS ONE, 2013, 8, e69048.	2.5	24
29	Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters. FEMS Microbiology Letters, 2012, 334, 111-118.	1.8	11
30	Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiology Letters, 2011, 322, 188-193.	1.8	35
31	Purification and Characterization of Dimethylsulfide Monooxygenase from <i>Hyphomicrobium sulfonivorans</i> . Journal of Bacteriology, 2011, 193, 1250-1258.	2.2	79
32	Draft Genome Sequence of the Chemolithoheterotrophic, Halophilic Methylotroph Methylophaga thiooxydans DMS010. Journal of Bacteriology, 2011, 193, 3154-3155.	2.2	37
33	Genetics of the glutamateâ€mediated methylamine utilization pathway in the facultative methylotrophic betaâ€proteobacterium <i>Methyloversatilis universalis</i> FAM5. Molecular Microbiology, 2010, 75, 426-439.	2.5	77
34	Oxidation of dimethylsulfide to tetrathionate by <i>Methylophaga thiooxidans</i> sp. nov.: a new link in the sulfur cycle. Environmental Microbiology, 2010, 12, 2688-2699.	3.8	99
35	Î ³ -Glutamylmethylamide Is an Essential Intermediate in the Metabolism of Methylamine by <i>Methylocella silvestris</i> . Applied and Environmental Microbiology, 2010, 76, 4530-4537.	3.1	53
36	Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of Experimental Botany, 2010, 61, 315-334.	4.8	158

Hendrik Schäper

#	Article	IF	CITATIONS
37	Comparison of Bacterioneuston and Bacterioplankton Dynamics during a Phytoplankton Bloom in a Fjord Mesocosm. Applied and Environmental Microbiology, 2009, 75, 7173-7181.	3.1	63
38	Comparison and validation of sampling strategies for the molecular microbial analysis of surface microlayers. Aquatic Microbial Ecology, 2009, 57, 69-77.	1.8	49
39	Phylogenetic and functional gene analysis of the bacterial and archaeal communities associated with the surface microlayer of an estuary. ISME Journal, 2008, 2, 776-789.	9.8	50
40	Substrate-Specific Clades of Active Marine Methylotrophs Associated with a Phytoplankton Bloom in a Temperate Coastal Environment. Applied and Environmental Microbiology, 2008, 74, 7321-7328.	3.1	80
41	Isolation of Methylophaga spp. from Marine Dimethylsulfide-Degrading Enrichment Cultures and Identification of Polypeptides Induced during Growth on Dimethylsulfide. Applied and Environmental Microbiology, 2007, 73, 2580-2591.	3.1	103
42	Bacterial Cycling of Methyl Halides. Advances in Applied Microbiology, 2007, 61, 307-346.	2.4	30
43	Stable-isotope probing implicates <i>Methylophaga</i> spp and novel <i>Gammaproteobacteria</i> in marine methanol and methylamine metabolism. ISME Journal, 2007, 1, 480-491.	9.8	177
44	Microbial diversity in deep sediments of the Benguela Upwelling System. Aquatic Microbial Ecology, 2007, 50, 1-9.	1.8	13
45	Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria. Environmental Microbiology, 2005, 7, 839-852.	3.8	57
46	Analysis of Methane Monooxygenase Genes in Mono Lake Suggests That Increased Methane Oxidation Activity May Correlate with a Change in Methanotroph Community Structure. Applied and Environmental Microbiology, 2005, 71, 6458-6462.	3.1	65
47	Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France). Aquatic Microbial Ecology, 2002, 28, 13-24.	1.8	117
48	Genetic diversity of ?satellite? bacteria present in cultures of marine diatoms. FEMS Microbiology Ecology, 2002, 42, 25-35.	2.7	45
49	Genetic diversity of â€Â~satellite' bacteria present in cultures of marine diatoms. FEMS Microbiology Ecology, 2002, 42, 25-35.	2.7	165
50	Denaturing gradient gel electrophoresis in marine microbial ecology. Methods in Microbiology, 2001, 30, 425-468.	0.8	212
51	A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry, 2001, 43, 314-321.	1.8	36
52	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiology Ecology, 2001, 34, 243-253.	2.7	168
53	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiology Ecology, 2001, 34, 255-266.	2.7	78
54	A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry, 2001, 43, 314-321.	1.8	5

Hendrik SchÄper

#	Article	IF	CITATIONS
55	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiology Ecology, 2001, 34, 255-266.	2.7	4
56	Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquatic Microbial Ecology, 2000, 23, 1-11.	1.8	71
57	Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Archives of Microbiology, 2000, 173, 138-145.	2.2	88
58	Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2000, 66, 499-508.	3.1	392
59	The Response of the Microbial Community of Marine Sediments to Organic Carbon Input under Anaerobic Conditions. Systematic and Applied Microbiology, 1999, 22, 237-248.	2.8	89
60	changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquatic Microbial Ecology, 1999, 19, 255-267.	1.8	85