
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut, 2022, 71, 716-723.	12.1	83
2	Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut, 2022, 71, 910-918.	12.1	66
3	Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology, 2022, 162, 548-561.e4.	1.3	131
4	Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. European Journal of Nutrition, 2022, 61, 1701-1734.	3.9	8
5	Interplays between drugs and the gut microbiome. Gastroenterology Report, 2022, 10, goac009.	1.3	16
6	Immune Cell Landscaping Reveals Distinct Immune Signatures of Inflammatory Bowel Disease. Frontiers in Immunology, 2022, 13, 861790.	4.8	14
7	Roles of the gut virome and mycobiome in faecal microbiota transplantation. The Lancet Gastroenterology and Hepatology, 2022, 7, 472-484.	8.1	34
8	Longitudinal Evaluation of Gut Bacteriomes and Viromes after Fecal Microbiota Transplantation for Eradication of Carbapenem-Resistant <i>Enterobacteriaceae</i> . MSystems, 2022, 7, .	3.8	5
9	The gut virome: A new microbiome component in health and disease. EBioMedicine, 2022, 81, 104113.	6.1	93
10	Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 2021, 70, gutjnl-2020-322294.	12.1	314
11	Population-Level Configurations of Gut Mycobiome Across 6 Ethnicities in Urban and Rural China. Gastroenterology, 2021, 160, 272-286.e11.	1.3	63
12	Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70, 698-706.	12.1	818
13	Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nature Communications, 2021, 12, 65.	12.8	51
14	Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nature Genetics, 2021, 53, 500-510.	21.4	56
15	Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. Microbiome, 2021, 9, 91.	11.1	40
16	Reply. Gastroenterology, 2021, 160, 2193-2195.	1.3	1
17	Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms, 2021, 9, 1017.	3.6	16
18	Su545 A SYSTEMATIC REVIEW OF PROBIOTIC SUPPLEMENTATION IN AMELIORATING THE NEUROCOGNITIVE DECLINE OF ALZHEIMER'S DISEASE. Gastroenterology, 2021, 160, S-734-S-735.	1.3	0

#	Article	IF	CITATIONS
19	Su538 THE EFFICACY OF PREBIOTIC ADMINISTRATION IN THE AMELIORATION OF ALZHEIMER'S DISEASE: A PRISMA REVIEW OF IN VIVO ANIMAL STUDIES. Gastroenterology, 2021, 160, S-731-S-732.	1.3	0
20	Sa610 MULTI-OMICS ANALYSIS IDENTIFIED SPECIFIC FECAL AND MUCOSAL BACTERIA AND METABOLITES ASSOCIATED WITH RESPONSE TO FECAL MICROBIOTA TRANSPLANTATION FOR OBESITY. Gastroenterology, 2021, 160, S-573.	1.3	0
21	Editorial: Food Additives, Cooking and Processing: Impact on the Microbiome. Frontiers in Nutrition, 2021, 8, 731040.	3.7	5
22	Gut Microbiome Alterations in COVID-19. Genomics, Proteomics and Bioinformatics, 2021, 19, 679-688.	6.9	62
23	Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology, 2021, 161, 1257-1269.e13.	1.3	76
24	COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduction and Targeted Therapy, 2021, 6, 427.	17.1	55
25	Authors response: giant oversights in the human gut virome. Gut, 2020, 69, 1358.2-1358.	12.1	1
26	Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut, 2020, 69, 83-91.	12.1	85
27	Testis-enriched circular RNA circ-Bbs9 plays an important role in Leydig cell proliferation by regulating a CyclinD2-dependent pathway. Reproduction, Fertility and Development, 2020, 32, 355.	0.4	6
28	Human-Gut-DNA Virome Variations across Geography, Ethnicity, and Urbanization. Cell Host and Microbe, 2020, 28, 741-751.e4.	11.0	95
29	Mo1953 METAGENOMIC ANALYSIS OF HUMAN FECAL VIROME SHOWED GEOGRAPHY AND POPULATION-SPECIFIC SIGNATURES IN OBESITY. Gastroenterology, 2020, 158, S-991.	1.3	0
30	Sa1915 POPULATION-LEVEL CONFIGURATIONS OF GUT MYCOBIOME ACROSS SIX ETHNICITIES IN URBAN AND RURAL CHINA. Gastroenterology, 2020, 158, S-478-S-479.	1.3	4
31	Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, 159, 944-955.e8.	1.3	1,072
32	817 THE HUMAN GUT VIROME IS GEOGRAPHY AND ETHNICITY SPECIFIC - POPULATION-BASED VIRAL METAGENOMICS ANALYSIS ACROSS SIX ETHNICITIES IN RURAL AND URBAN CHINA. Gastroenterology, 2020, 158, S-162.	1.3	0
33	Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology, 2020, 159, 1302-1310.e5.	1.3	237
34	Sa1928 A 24-WEEK, DOUBLE-BLIND, RANDOMIZED TRIAL OF FECAL MICROBIOTA TRANSPLANTATION ON MICROBIAL ACQUISITION IN OBESE PATIENTS WITH TYPE 2 DIABETES MELLITUS. Gastroenterology, 2020, 158, S-483-S-484.	1.3	0
35	625 – Donor Fungi and Bacteria Engraftment After Successful Eradication of Carbapenem-Resistant Enterobacteriaceae with Fecal Microbiota Transplantation: Serial Fecal Metagenomics Analysis. Gastroenterology, 2019, 156, S-131.	1.3	1
36	Drugs for Targeted Therapies of Alzheimer's Disease. Current Medicinal Chemistry, 2019, 26, 335-359.	2.4	12

#	Article	IF	CITATIONS
37	Review article: fungal alterations in inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics, 2019, 50, 1159-1171.	3.7	52
38	259 – Increased Bacteriophage Abundance and Loss of Viralbacterial Interactions in the Mucosa of Ulcerative Colitis: Key to Pathogenesis?. Gastroenterology, 2019, 156, S-49.	1.3	0
39	Tu1850 – Adherent-Invasive Escherichia Coli in Inflammatory Bowel Disease Impacts Fecal Microbiota Transplantation Efficacy by Hindering Engraftment of Beneficial Bacteria. Gastroenterology, 2019, 156, S-1147.	1.3	0
40	Tu1879 – Rapid and Durable Engraftment of Donor Fungi and Bacteria After Successful Fecal Microbiota Transplantation in Acute Graft-Versus-Host Disease: Intensive Serial Metagenomics Study. Gastroenterology, 2019, 156, S-1157-S-1158.	1.3	2
41	P830 Adherent-invasive <i>Escherichia coli</i> in inflammatory bowel disease impacts faecal microbiota transplantation efficacy by hindering engraftment of beneficial bacteria. Journal of Crohn's and Colitis, 2019, 13, S539-S539.	1.3	0
42	LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Applied Microbiology and Biotechnology, 2019, 103, 4649-4677.	3.6	99
43	P831 Gut mucosal virome alterations and loss of viral-bacterial interactions in ulcerative colitis. Journal of Crohn's and Colitis, 2019, 13, S539-S540.	1.3	0
44	Gut mucosal virome alterations in ulcerative colitis. Gut, 2019, 68, 1169-1179.	12.1	289
45	IDDF2019-ABS-0157â€Fecal microbiota transplantations reconstitute gut fungal and viral microbiota in graft-versus-host disease. , 2019, , .		1
46	IDDF2019-ABS-0184â€Role of adherent-invasive E. coli in inflammatory bowel disease – epidemiology, genetics and therapeutics. , 2019, , .		0
47	Bacteriophage transfer during faecal microbiota transplantation in <i>Clostridium difficile</i> infection is associated with treatment outcome. Gut, 2018, 67, gutjnl-2017-313952.	12.1	241
48	A novel susceptibility locus in <i><scp>MST</scp>1</i> and geneâ€gene interaction network for Crohn's disease in the Chinese population. Journal of Cellular and Molecular Medicine, 2018, 22, 2368-2377.	3.6	10
49	Urbanization and the gut microbiota in health and inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 440-452.	17.8	187
50	Time for food: The impact of diet on gut microbiota and human health. Nutrition, 2018, 51-52, 80-85.	2.4	94
51	The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Frontiers in Microbiology, 2018, 9, 2247.	3.5	408
52	Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nature Communications, 2018, 9, 3663.	12.8	177
53	83 - Fecal Microbiota Transplantation alters the GUT Mycobiome (Fungome) which Correlates with Treatment Outcome in Clostridium Difficile Infection. Gastroenterology, 2018, 154, S-24.	1.3	0
54	INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. ELife, 2018, 7, .	6.0	17

#	Article	IF	CITATIONS
55	The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer. Engineering, 2017, 3, 90-97.	6.7	26
56	Novel dietary polysaccharide SIP promotes intestinal secretory immunoglobulin A secretion in mice under chemotherapy. Journal of Functional Foods, 2017, 37, 379-389.	3.4	9
57	Bacteriophage Transfer during Fecal Microbiota Transplantation is Associated with Treatment Response in Clostridium Difficile Infection. Gastroenterology, 2017, 152, S140-S141.	1.3	5
58	Therapeutic potentials of short interfering RNAs. Applied Microbiology and Biotechnology, 2017, 101, 7091-7111.	3.6	22
59	The Role of Antioxidant Enzymes in the Ovaries. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	98
60	Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	4.0	190
61	Transportation of squid ink polysaccharide SIP through intestinal epithelial cells and its utilization in the gastrointestinal tract. Journal of Functional Foods, 2016, 22, 408-416.	3.4	24
62	High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. Journal of Functional Foods, 2016, 20, 506-515.	3.4	44
63	The Preventative Effect of Dietary <i>Apostichopus japonicus</i> on Intestinal Microflora Dysregulation in Immunosuppressive Mice Induced by Cyclophosphamide. Journal of Biosciences and Medicines, 2016, 04, 24-35.	0.2	2
64	The dietary polysaccharide from Ommastrephes bartrami prevents chemotherapeutic mucositis by promoting the gene expression of antimicrobial peptides in Paneth cells. Journal of Functional Foods, 2015, 12, 530-539.	3.4	13
65	The Squid Ink Polysaccharides Protect Tight Junctions and Adherens Junctions from Chemotherapeutic Injury in the Small Intestinal Epithelium of Mice. Nutrition and Cancer, 2015, 67, 364-371.	2.0	31
66	Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis and Photodynamic Therapy, 2015, 12, 385-392.	2.6	57
67	Dietary <i>Apostichopus japonicus</i> enhances the respiratory and intestinal mucosal immunity in immunosuppressive mice. Bioscience, Biotechnology and Biochemistry, 2015, 79, 253-259.	1.3	11
68	Establishment of a functional secretory IgA transcytosis model system in vitro for functional food screening. Applied Microbiology and Biotechnology, 2015, 99, 5535-5545.	3.6	4
69	Dietary squid ink polysaccharide induces goblet cells to protect small intestine from chemotherapy induced injury. Food and Function, 2015, 6, 981-986.	4.6	40
70	Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food and Function, 2015, 6, 415-422.	4.6	73
71	Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food and Function, 2014, 5, 3189-3196.	4.6	41
72	Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food and Function, 2014, 5, 2529-2535.	4.6	34

#	Article	IF	CITATIONS
73	Identification of five sea cucumber species through PCR-RFLP analysis. Journal of Ocean University of China, 2014, 13, 825-829.	1.2	3
74	Rapid identification of sea cucumber species with multiplex-PCR. Food Control, 2012, 26, 58-62.	5.5	8
75	Temporal Landscape of Human Gut Virome in SARS-CoV-2 Infection and Severity. SSRN Electronic Journal, 0, , .	0.4	0
76	â€~Dark matter' beyond the bacteria in faecal microbiota transplantation. Nature Reviews Gastroenterology and Hepatology, 0, , .	17.8	0