## Mario F Fraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653126/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | From The Cover: Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the United States of America, 2005, 102, 10604-10609.                                               | 3.3  | 3,169     |
| 2  | Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523, 177-182.                                                                                                    | 13.7 | 2,240     |
| 3  | The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439, 871-874.                                                                                                            | 13.7 | 1,964     |
| 4  | Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 2005, 37, 391-400.                                                          | 9.4  | 1,710     |
| 5  | Epigenetics and the environment: emerging patterns and implications. Nature Reviews Genetics, 2012, 13, 97-109.                                                                                           | 7.7  | 1,524     |
| 6  | The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 2003, 116, 499-511. | 1.2  | 1,021     |
| 7  | Genetic Unmasking of an Epigenetically Silenced microRNA in Human Cancer Cells. Cancer Research, 2007, 67, 1424-1429.                                                                                     | 0.4  | 883       |
| 8  | Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10522-10527.                                            | 3.3  | 687       |
| 9  | Epigenetics and aging: the targets and the marks. Trends in Genetics, 2007, 23, 413-418.                                                                                                                  | 2.9  | 611       |
| 10 | Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Research, 2010, 20, 170-179.                                                            | 2.4  | 569       |
| 11 | DNA methyltransferases control telomere length and telomere recombination in mammalian cells.<br>Nature Cell Biology, 2006, 8, 416-424.                                                                   | 4.6  | 538       |
| 12 | Child Health, Developmental Plasticity, and Epigenetic Programming. Endocrine Reviews, 2011, 32, 159-224.                                                                                                 | 8.9  | 533       |
| 13 | DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Human<br>Molecular Genetics, 2001, 10, 3001-3007.                                                                      | 1.4  | 374       |
| 14 | DNA Methylation: A Profile of Methods and Applications. BioTechniques, 2002, 33, 632-649.                                                                                                                 | 0.8  | 359       |
| 15 | A DNA methylation fingerprint of 1628 human samples. Genome Research, 2012, 22, 407-419.                                                                                                                  | 2.4  | 341       |
| 16 | A Role for RNAi in the Selective Correction of DNA Methylation Defects. Science, 2009, 323, 1600-1604.                                                                                                    | 6.0  | 338       |
| 17 | Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554, 62-68.                                                                                                        | 13.7 | 328       |
| 18 | Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer.<br>Oncogene, 2006, 25, 4116-4121.                                                                       | 2.6  | 320       |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 2009, 8, 268-276.                                                                                       | 5.0 | 319       |
| 20 | Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nature Cell<br>Biology, 2005, 7, 420-428.                                                        | 4.6 | 314       |
| 21 | Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO<br>Journal, 2003, 22, 6335-6345.                                                          | 3.5 | 294       |
| 22 | Chromosomal Instability Correlates with Genome-wide DNA Demethylation in Human Primary<br>Colorectal Cancers. Cancer Research, 2006, 66, 8462-9468.                                         | 0.4 | 286       |
| 23 | A systematic profile of DNA methylation in human cancer cell lines. Cancer Research, 2003, 63, 1114-21.                                                                                     | 0.4 | 286       |
| 24 | DNA Methylation Polymorphisms Precede Any Histological Sign of Atherosclerosis in Mice Lacking<br>Apolipoprotein E. Journal of Biological Chemistry, 2004, 279, 29147-29154.                | 1.6 | 279       |
| 25 | Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 2013, 3, 399-415.                                                             | 0.8 | 271       |
| 26 | Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nature Biotechnology, 2016, 34, 726-737.                                             | 9.4 | 270       |
| 27 | Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice.<br>Hepatology, 2008, 47, 1191-1199.                                                   | 3.6 | 262       |
| 28 | A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nature Genetics, 2006, 38, 566-569.                                                   | 9.4 | 254       |
| 29 | Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene, 2009, 28,<br>781-791.                                                                           | 2.6 | 244       |
| 30 | Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8822-8827. | 3.3 | 240       |
| 31 | Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer<br>Research, 2003, 63, 4984-9.                                                           | 0.4 | 236       |
| 32 | Cross-Talk between Aging and Cancer: The Epigenetic Language. Annals of the New York Academy of<br>Sciences, 2007, 1100, 60-74.                                                             | 1.8 | 221       |
| 33 | The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome<br>Research, 2009, 19, 438-451.                                                              | 2.4 | 218       |
| 34 | Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder<br>Cancer Study: a case–control study. Lancet Oncology, The, 2008, 9, 359-366.          | 5.1 | 211       |
| 35 | The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Research, 2003, 31, 1765-1774.                          | 6.5 | 202       |
| 36 | A Mouse Skin Multistage Carcinogenesis Model Reflects the Aberrant DNA Methylation Patterns of Human Tumors. Cancer Research, 2004, 64, 5527-5534.                                          | 0.4 | 193       |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Epigenetics and environment: a complex relationship. Journal of Applied Physiology, 2010, 109, 243-251.                                                                                                                                        | 1.2 | 191       |
| 38 | Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in<br>human neuroblastoma and glioma. Proceedings of the National Academy of Sciences of the United<br>States of America, 2009, 106, 21830-21835. | 3.3 | 190       |
| 39 | Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan. Science, 2014, 344, 523-527.                                                                                                                                      | 6.0 | 188       |
| 40 | The Epigenetic Basis of Twin Discordance in Age-Related Diseases. Pediatric Research, 2007, 61, 38R-42R.                                                                                                                                       | 1.1 | 183       |
| 41 | A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for<br>Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.                                                                                       | 7.7 | 183       |
| 42 | Research Resource: Transcriptional Profiling Reveals Different Pseudohypoxic Signatures in SDHB and VHL-Related Pheochromocytomas. Molecular Endocrinology, 2010, 24, 2382-2391.                                                               | 3.7 | 179       |
| 43 | Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 2012, 55, 3341-3349.                                                                                      | 2.9 | 179       |
| 44 | Human DNA Methyltransferase 1 Is Required for Maintenance of the Histone H3 Modification Pattern.<br>Journal of Biological Chemistry, 2004, 279, 37175-37184.                                                                                  | 1.6 | 171       |
| 45 | Genome-Wide Analysis of DNA Methylation Differences in Muscle and Fat from Monozygotic Twins<br>Discordant for Type 2 Diabetes. PLoS ONE, 2012, 7, e51302.                                                                                     | 1.1 | 171       |
| 46 | Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis. Lancet Respiratory Medicine,the, 2018, 6, 771-781.                                                              | 5.2 | 167       |
| 47 | The Wnt antagonist DICKKOPF-1 gene is induced by 1Â,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 2007, 28, 1877-1884.                                                                 | 1.3 | 166       |
| 48 | DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Research, 2010, 12, R77.                                                                                                                                       | 2.2 | 159       |
| 49 | EMP3, a Myelin-Related Gene Located in the Critical 19q13.3 Region, Is Epigenetically Silenced and Exhibits Features of a Candidate Tumor Suppressor in Glioma and Neuroblastoma. Cancer Research, 2005, 65, 2565-2571.                        | 0.4 | 154       |
| 50 | Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13736-13741.                                                     | 3.3 | 154       |
| 51 | Towards the Human Cancer Epigenome: A First Draft of Histone Modifications. Cell Cycle, 2005, 4,<br>1377-1381.                                                                                                                                 | 1.3 | 149       |
| 52 | Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 2019, 11, 81.                                                                                                                                                            | 1.8 | 147       |
| 53 | Genomeâ€wide <scp>DNA</scp> methylation changes with age in diseaseâ€free human skeletal muscle.<br>Aging Cell, 2014, 13, 360-366.                                                                                                             | 3.0 | 145       |
| 54 | Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Human Reproduction, 2015, 30, 1014-1028.                                                                                                                 | 0.4 | 144       |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | High-performance capillary electrophoretic method for the quantification of 5-methyl<br>2'-deoxycytidine in genomic DNA: Application to plant, animal and human cancer tissues.<br>Electrophoresis, 2002, 23, 1677.                             | 1.3 | 142       |
| 56 | Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Molecular<br>Cell, 2016, 61, 520-534.                                                                                                                      | 4.5 | 142       |
| 57 | Genome-Wide Analysis of Epigenetic Silencing Identifies BEX1 and BEX2 as Candidate Tumor Suppressor<br>Genes in Malignant Glioma. Cancer Research, 2006, 66, 6665-6674.                                                                         | 0.4 | 135       |
| 58 | New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood, 2009, 113, 2488-2497.                                                                     | 0.6 | 133       |
| 59 | Genomeâ€wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoparthritis. Arthritis and Rheumatism, 2013, 65, 197-205.                                                                                      | 6.7 | 133       |
| 60 | DNA methylation: a promising landscape for immune system-related diseases. Trends in Genetics, 2012, 28, 506-514.                                                                                                                               | 2.9 | 131       |
| 61 | DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain,<br>2013, 136, 3018-3027.                                                                                                                    | 3.7 | 129       |
| 62 | Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1<br>(Dnmt1) deficient cells. Nucleic Acids Research, 2007, 35, 2191-2198.                                                                     | 6.5 | 128       |
| 63 | Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiology, 2002, 22, 813-816.                                                                                                                     | 1.4 | 123       |
| 64 | Inactivation of the Lamin A/C Gene by CpG Island Promoter Hypermethylation in Hematologic<br>Malignancies, and Its Association With Poor Survival in Nodal Diffuse Large B-Cell Lymphoma. Journal<br>of Clinical Oncology, 2005, 23, 3940-3947. | 0.8 | 119       |
| 65 | H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.<br>Genome Research, 2015, 25, 27-40.                                                                                                              | 2.4 | 119       |
| 66 | Cancer Epigenetics and Methylation. Science, 2002, 297, 1807d-1808.                                                                                                                                                                             | 6.0 | 116       |
| 67 | A Profile of Methyl-CpG Binding Domain Protein Occupancy of Hypermethylated Promoter CpG Islands<br>of Tumor Suppressor Genes in Human Cancer. Cancer Research, 2006, 66, 8342-8346.                                                            | 0.4 | 116       |
| 68 | DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. Journal of Bone and Mineral Research, 2012, 27, 926-937.                                                                                            | 3.1 | 116       |
| 69 | Involvement of DNA methylation in tree development and micropropagation. Plant Cell, Tissue and Organ Culture, 2007, 91, 75-86.                                                                                                                 | 1.2 | 113       |
| 70 | Epigenetic regulation of telomeres in human cancer. Oncogene, 2008, 27, 6817-6833.                                                                                                                                                              | 2.6 | 111       |
| 71 | Rapid quantification of DNA methylation by high performance capillary electrophoresis.<br>Electrophoresis, 2000, 21, 2990-2994.                                                                                                                 | 1.3 | 108       |
| 72 | Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis, 2005, 26, 1856-1867.                                                                                              | 1.3 | 108       |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | DNA Methylation Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Cancer Prevention Research, 2013, 6, 656-665.                                                                                     | 0.7 | 107       |
| 74 | Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathologica, 2019, 138, 1053-1074.                                    | 3.9 | 106       |
| 75 | Genetic and Epigenetic screening for gene alterations of the chromatin-remodeling factor,<br>SMARCA4/BRG1, in lung tumors. Genes Chromosomes and Cancer, 2004, 41, 170-177.                                  | 1.5 | 103       |
| 76 | Genetic and epigenetic regulation of aging. Current Opinion in Immunology, 2009, 21, 446-453.                                                                                                                | 2.4 | 101       |
| 77 | TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nature Communications, 2018, 9, 1548.                                                 | 5.8 | 101       |
| 78 | DNA Methylation Signatures Identify Biologically Distinct Thyroid Cancer Subtypes. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2811-2821.                                                    | 1.8 | 100       |
| 79 | Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells. PLoS ONE, 2008, 3, e3306.                                                                                           | 1.1 | 99        |
| 80 | Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics, 2012, 7, 83-91.                                                                                                | 1.3 | 99        |
| 81 | The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis, 2006, 27, 1099-1104.                                   | 1.3 | 97        |
| 82 | A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids<br>Research, 2012, 40, 116-131.                                                                                 | 6.5 | 97        |
| 83 | DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster.<br>Cancer Research, 2016, 76, 4546-4558.                                                                 | 0.4 | 94        |
| 84 | Angiostatic activity of DNA methyltransferase inhibitors. Molecular Cancer Therapeutics, 2006, 5,<br>467-475.                                                                                                | 1.9 | 93        |
| 85 | Identification of a DNA methylation signature in blood cells from persons with Down Syndrome.<br>Aging, 2014, 7, 82-96.                                                                                      | 1.4 | 92        |
| 86 | Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and<br>Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e10192.                                                     | 1.1 | 91        |
| 87 | Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Human Molecular Genetics, 2004, 13, 2753-2765.                                  | 1.4 | 86        |
| 88 | Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals<br>Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway. Neoplasia, 2007, 9,<br>840-IN12. | 2.3 | 86        |
| 89 | Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis, 2006, 27, 1661-1669.                                                                                                            | 1.3 | 85        |
| 90 | Global DNA hypomethylation in cancer: review of validated methods and clinical significance. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1733-42.                                                  | 1.4 | 85        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta, 2002, 215, 672-678.                                                                                                      | 1.6 | 84        |
| 92  | Discovery of Salermide-Related Sirtuin Inhibitors: Binding Mode Studies and Antiproliferative Effects<br>in Cancer Cells Including Cancer Stem Cells. Journal of Medicinal Chemistry, 2012, 55, 10937-10947.        | 2.9 | 84        |
| 93  | Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 2013, 34, 765-781.                                                                                                                       | 2.7 | 83        |
| 94  | Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia. Genes and Immunity, 2015, 16, 71-82.                                                                                   | 2.2 | 82        |
| 95  | Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide.<br>Hepatology, 2010, 52, 105-114.                                                                               | 3.6 | 81        |
| 96  | The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome.<br>International Journal of Nanomedicine, 2016, Volume 11, 6297-6306.                                                         | 3.3 | 78        |
| 97  | Novel epigenetically deregulated genes in testicular cancer include homeobox genes andSCGB3A1(HIN-1). Journal of Pathology, 2006, 210, 441-449.                                                                     | 2.1 | 77        |
| 98  | The <i>ADAMTS12</i> metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. Journal of Cell Science, 2009, 122, 2906-2913. | 1.2 | 76        |
| 99  | Genetic and Non-genetic Predictors of LINE-1 Methylation in Leukocyte DNA. Environmental Health<br>Perspectives, 2013, 121, 650-656.                                                                                | 2.8 | 75        |
| 100 | DNA methylation patterns in newborns exposed to tobacco in utero. Journal of Translational<br>Medicine, 2015, 13, 25.                                                                                               | 1.8 | 75        |
| 101 | Cancer Genes Hypermethylated in Human Embryonic Stem Cells. PLoS ONE, 2008, 3, e3294.                                                                                                                               | 1.1 | 75        |
| 102 | The absence of p53 is critical for the induction of apoptosis by 5-aza-2′-deoxycytidine. Oncogene, 2004, 23, 735-743.                                                                                               | 2.6 | 73        |
| 103 | Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell, 2018, 17, e12744.                                                                                                             | 3.0 | 72        |
| 104 | Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and<br>Human Colorectal Tumors. Cancer Research, 2013, 73, 395-405.                                                     | 0.4 | 69        |
| 105 | The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Research<br>Reviews, 2017, 37, 28-38.                                                                                    | 5.0 | 69        |
| 106 | Altered expression of adhesion molecules and epithelial–mesenchymal transition in silica-induced rat<br>lung carcinogenesis. Laboratory Investigation, 2004, 84, 999-1012.                                          | 1.7 | 68        |
| 107 | Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia, 2014, 57, 1154-1158.                                                       | 2.9 | 67        |
| 108 | S-adenosylmethionine Levels Regulate the Schwann Cell DNA Methylome. Neuron, 2014, 81, 1024-1039.                                                                                                                   | 3.8 | 67        |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The impact of MECP2 mutations in the expression patterns of Rett syndrome patients. Human Genetics, 2005, 116, 91-104.                                                             | 1.8  | 66        |
| 110 | Variations in DNA Methylation Patterns During the Cell Cycle of HeLa Cells. Epigenetics, 2007, 2, 54-65.                                                                           | 1.3  | 66        |
| 111 | Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a. Cell Reports, 2014, 8, 743-753.                                                                  | 2.9  | 66        |
| 112 | Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget, 2016, 7, 47954-47965.                                                                    | 0.8  | 66        |
| 113 | iPSCs from cancer cells: challenges and opportunities. Trends in Molecular Medicine, 2012, 18, 245-247.                                                                            | 3.5  | 65        |
| 114 | The novel DNA methylation inhibitor zebularine is effective against the development of murine T-cell lymphoma. Blood, 2006, 107, 1174-1177.                                        | 0.6  | 64        |
| 115 | Abnormal PcG protein expression in Hodgkin's lymphoma. Relation with E2F6 and NFήB transcription factors. Journal of Pathology, 2004, 204, 528-537.                                | 2.1  | 63        |
| 116 | Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nature Communications, 2013, 4, 2268.                                                   | 5.8  | 63        |
| 117 | Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Molecular<br>Cancer, 2010, 9, 170.                                                        | 7.9  | 61        |
| 118 | Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics, 2017, 12, 113-122.      | 1.3  | 60        |
| 119 | Multiâ€omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging<br>Cell, 2022, 21, e13578.                                                  | 3.0  | 60        |
| 120 | The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA.<br>Nucleic Acids Research, 2009, 37, 2658-2671.                                        | 6.5  | 56        |
| 121 | The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics, 2011, 6, 870-874.                                                              | 1.3  | 56        |
| 122 | Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Molecular Metabolism, 2021, 45, 101165.                                 | 3.0  | 56        |
| 123 | CpG island promoter hypermethylation of the Ras-effector gene NORE1A occurs in the context of a wild-type K-ras in lung cancer. Oncogene, 2004, 23, 8695-8699.                     | 2.6  | 55        |
| 124 | Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins. Oncogene, 2008, 27, 3556-3566.                             | 2.6  | 54        |
| 125 | Epigenetic regulation of the immune system in health and disease. Tissue Antigens, 2010, 76, 431-439.                                                                              | 1.0  | 54        |
| 126 | The B cell transcription program mediates hypomethylation and overexpression of key genes in Epstein-Barr virus-associated proliferative conversion. Genome Biology, 2013, 14, R3. | 13.9 | 53        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The role of genetics in the establishment and maintenance of the epigenome. Cellular and Molecular<br>Life Sciences, 2013, 70, 1543-1573.                                                                                  | 2.4 | 53        |
| 128 | DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and<br>Prognostic Markers. Clinical Cancer Research, 2015, 21, 3020-3030.                                                               | 3.2 | 53        |
| 129 | Epigenetic Inactivation of the Groucho Homologue Gene TLE1 in Hematologic Malignancies. Cancer Research, 2008, 68, 4116-4122.                                                                                              | 0.4 | 50        |
| 130 | Nuclear envelope alterations generate an agingâ€like epigenetic pattern in mice deficient in Zmpste24<br>metalloprotease. Aging Cell, 2010, 9, 947-957.                                                                    | 3.0 | 50        |
| 131 | Aberrant epigenetic regulation of bromodomain Brd4 in human colon cancer. Journal of Molecular<br>Medicine, 2012, 90, 587-595.                                                                                             | 1.7 | 50        |
| 132 | A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Research, 2012, 22, 986-1002.                                                                   | 5.7 | 49        |
| 133 | Combinatorial effects of splice variants modulate function of Aiolos. Journal of Cell Science, 2007, 120, 2619-2630.                                                                                                       | 1.2 | 45        |
| 134 | Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nature<br>Communications, 2014, 5, 4226.                                                                                             | 5.8 | 45        |
| 135 | Epigenetic downregulation of TET3 reduces genomeâ€wide 5hmC levels and promotes glioblastoma<br>tumorigenesis. International Journal of Cancer, 2020, 146, 373-387.                                                        | 2.3 | 45        |
| 136 | Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis. Melanoma Research, 2010, 20, 392-400.                                                                     | 0.6 | 44        |
| 137 | Beckwith–Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination<br>breakpoints and evaluation of several techniques. European Journal of Human Genetics, 2011, 19,<br>416-421.                   | 1.4 | 44        |
| 138 | Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. Journal of Translational Medicine, 2019, 17, 15.                                                                 | 1.8 | 44        |
| 139 | Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck<br>cancer: pathobiological mechanisms and clinical implications. Journal of Molecular Medicine, 2012,<br>90, 1173-1184. | 1.7 | 43        |
| 140 | Genetic and epigenetic profile of sporadic pheochromocytomas. Journal of Medical Genetics, 2004, 41, 30e-30.                                                                                                               | 1.5 | 42        |
| 141 | Checkpoint kinase 1 (CHK1) protein and mRNA expression is downregulated in aggressive variants of human lymphoid neoplasms. Leukemia, 2005, 19, 112-117.                                                                   | 3.3 | 42        |
| 142 | Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene, 2013, 532, 165-172.                                                                                       | 1.0 | 42        |
| 143 | Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E328-37.              | 3.3 | 41        |
| 144 | Epigenetic Alterations of the Wnt/β -Catenin Pathway in Human Disease. Endocrine, Metabolic<br>and Immune Disorders - Drug Targets, 2007, 7, 13-21.                                                                        | 0.6 | 40        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Specific hypermethylation of LINE-1 elements during abnormal overgrowth and differentiation of human placenta. Oncogene, 2007, 26, 2518-2524.                                                 | 2.6 | 40        |
| 146 | Identification of Tri―and Tetracyclic Pyrimidinediones as Sirtuin Inhibitors. ChemMedChem, 2010, 5,<br>674-677.                                                                               | 1.6 | 40        |
| 147 | Epigenetics of Aging. Current Genomics, 2015, 16, 435-440.                                                                                                                                    | 0.7 | 39        |
| 148 | Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into<br>Pluripotency. Stem Cell Reports, 2016, 7, 602-618.                                         | 2.3 | 38        |
| 149 | MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death and Disease, 2018, 9, 958.                                                             | 2.7 | 38        |
| 150 | Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.<br>Leukemia, 2016, 30, 674-682.                                                                | 3.3 | 36        |
| 151 | DNA methylation changes in human lung epithelia cells exposed to multi-walled carbon nanotubes.<br>Nanotoxicology, 2017, 11, 857-870.                                                         | 1.6 | 36        |
| 152 | Discovery of Reversible DNA Methyltransferase and Lysine Methyltransferase G9a Inhibitors with Antitumoral in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 6518-6545.             | 2.9 | 36        |
| 153 | The growing role of gene methylation on endocrine function. Journal of Molecular Endocrinology, 2011, 47, R75-R89.                                                                            | 1.1 | 35        |
| 154 | De novo DNA methyltransferases: oncogenes, tumor suppressors, or both?. Trends in Genetics, 2012, 28, 474-479.                                                                                | 2.9 | 35        |
| 155 | Hypomethylation of LINE-1, and not centromeric SAT-α, is associated with centromeric instability in head and neck squamous cell carcinoma. Cellular Oncology (Dordrecht), 2012, 35, 259-267.  | 2.1 | 35        |
| 156 | Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget, 2015, 6, 5903-5917.                                                          | 0.8 | 35        |
| 157 | Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nature Cell Biology, 2020, 22, 1223-1238.                   | 4.6 | 35        |
| 158 | Release of Hypoacetylated and Trimethylated Histone H4 Is an Epigenetic Marker of Early Apoptosis.<br>Journal of Biological Chemistry, 2006, 281, 13540-13547.                                | 1.6 | 34        |
| 159 | Quantification of Global DNA Methylation by Capillary Electrophoresis and Mass Spectrometry.<br>Methods in Molecular Biology, 2009, 507, 23-34.                                               | 0.4 | 34        |
| 160 | Oncometabolic Nuclear Reprogramming of Cancer Stemness. Stem Cell Reports, 2016, 6, 273-283.                                                                                                  | 2.3 | 34        |
| 161 | Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in <i>RET</i> M918T Tumors. Clinical Cancer Research, 2017, 23, 1334-1345. | 3.2 | 34        |
| 162 | Global DNA Hypomethylation in Liver Cancer Cases and Controls: A Phase I Preclinical Biomarker Development Study. Epigenetics, 2007, 2, 223-226.                                              | 1.3 | 33        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Role of Sirtuins in Stem Cell Differentiation. Genes and Cancer, 2013, 4, 105-111.                                                                                                                                               | 0.6 | 33        |
| 164 | Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. Journal of<br>Translational Medicine, 2016, 14, 207.                                                                                              | 1.8 | 33        |
| 165 | Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism. Journal of Medical Genetics, 2011, 48, 212-216.                                                            | 1.5 | 32        |
| 166 | Lack of Methylthioadenosine Phosphorylase Expression in Mantle Cell Lymphoma Is Associated with<br>Shorter Survival: Implications for a Potential Targeted Therapy. Clinical Cancer Research, 2006, 12,<br>3754-3761.            | 3.2 | 31        |
| 167 | SirT1 brings stemness closer to cancer and aging. Aging, 2011, 3, 162-167.                                                                                                                                                       | 1.4 | 31        |
| 168 | Aging genetics and aging. , 2011, 2, 186-95.                                                                                                                                                                                     |     | 31        |
| 169 | Changes in polyamine concentration associated with aging in Pinus radiata and Prunus persica. Tree Physiology, 2004, 24, 1221-1226.                                                                                              | 1.4 | 30        |
| 170 | Clinical and molecular analyses of Beckwith–Wiedemann syndrome: Comparison between<br>spontaneous conception and assisted reproduction techniques. American Journal of Medical Genetics,<br>Part A, 2016, 170, 2740-2749.        | 0.7 | 30        |
| 171 | Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood, 2021, 137, 994-999.                                                                                 | 0.6 | 30        |
| 172 | A DNA methylation signature associated with the epigenetic repression of glycine N-methyltransferase<br>in human hepatocellular carcinoma. Journal of Molecular Medicine, 2013, 91, 939-950.                                     | 1.7 | 29        |
| 173 | Longitudinal study of DNA methylation during the first 5Âyears of life. Journal of Translational<br>Medicine, 2016, 14, 160.                                                                                                     | 1.8 | 29        |
| 174 | Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies. Journal of the National Cancer Institute, 2022, 114, 436-445.                                                         | 3.0 | 29        |
| 175 | Epigenetic dysregulation of <i>TET2</i> in human glioblastoma. Oncotarget, 2018, 9, 25922-25934.                                                                                                                                 | 0.8 | 29        |
| 176 | Maintenance of Human Embryonic Stem Cells in Mesenchymal Stem Cell-Conditioned Media Augments<br>Hematopoietic Specification. Stem Cells and Development, 2012, 21, 1549-1558.                                                   | 1.1 | 27        |
| 177 | Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related<br>Genes in the Triple Transgenic Mouse Model of Alzheimer's Disease. Journal of Molecular<br>Neuroscience, 2016, 58, 243-253. | 1.1 | 27        |
| 178 | Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia, 2016, 30, 94-103.                                                                                                                         | 3.3 | 27        |
| 179 | Alzheimer's disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics, 2018, 10, 1365-1382.                                                                                 | 1.0 | 27        |
| 180 | The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-Î <sup>2</sup> in smooth muscle and hepatic stellate cells. Biochemical and Biophysical Research Communications, 2006, 345, 1526-1535.           | 1.0 | 26        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Generation and characterization of a human iPSC cell line expressing inducible Cas9 in the "safe<br>harbor―AAVS1 locus. Stem Cell Research, 2017, 21, 137-140.                                  | 0.3 | 26        |
| 182 | Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma. Human Molecular<br>Genetics, 2018, 27, 3046-3059.                                                                | 1.4 | 26        |
| 183 | Epigenetic inactivation of the ERK inhibitor Spry2 in B-cell diffuse lymphomas. Oncogene, 2008, 27, 4969-4972.                                                                                  | 2.6 | 25        |
| 184 | Natural history and cell of origin of TCF3-ZNF384 and PTPN11 mutations in monozygotic twins with concordant BCP-ALL. Blood, 2019, 134, 900-905.                                                 | 0.6 | 25        |
| 185 | DNA Methylation Dynamics in Blood after Hematopoietic Cell Transplant. PLoS ONE, 2013, 8, e56931.                                                                                               | 1.1 | 24        |
| 186 | Epigenetic alterations in endocrine-related cancer. Endocrine-Related Cancer, 2014, 21, R319-R330.                                                                                              | 1.6 | 24        |
| 187 | LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk. Epigenetics, 2014, 9, 1532-1539.                                                      | 1.3 | 24        |
| 188 | Capillary electrophoresis-based method to quantitate DNA–protein interactions. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 789, 431-435. | 1.2 | 23        |
| 189 | A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer. European Journal of Cancer, 2012, 48, 2270-2281.                       | 1.3 | 23        |
| 190 | Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Research, 2019, 47, 5016-5037.                      | 6.5 | 23        |
| 191 | Epigenetics and Aging: Status, Challenges, and Needs for the Future. Journals of Gerontology - Series<br>A Biological Sciences and Medical Sciences, 2009, 64A, 195-198.                        | 1.7 | 22        |
| 192 | Identification of (1H)-pyrroles as histone deacetylase inhibitors with antitumoral activity. Oncogene, 2009, 28, 1477-1484.                                                                     | 2.6 | 22        |
| 193 | Aging and cancer: are sirtuins the link?. Future Oncology, 2010, 6, 905-915.                                                                                                                    | 1.1 | 22        |
| 194 | Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death and Disease, 2013, 4, e570-e570.                                                            | 2.7 | 21        |
| 195 | Single cell-derived clones from human adipose stem cells present different immunomodulatory properties. Clinical and Experimental Immunology, 2014, 176, 255-265.                               | 1.1 | 21        |
| 196 | Title is missing!. Plant Cell, Tissue and Organ Culture, 2002, 70, 139-145.                                                                                                                     | 1.2 | 20        |
| 197 | Altered intragenic DNA methylation of HOOK2 gene in adipose tissue from individuals with obesity and type 2 diabetes. PLoS ONE, 2017, 12, e0189153.                                             | 1.1 | 20        |
| 198 | Generation of a human iPSC line from a patient with Leigh syndrome. Stem Cell Research, 2016, 16, 63-66.                                                                                        | 0.3 | 19        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Quantification of Global DNA Methylation Levels by Mass Spectrometry. Methods in Molecular<br>Biology, 2018, 1708, 49-58.                                                                                              | 0.4 | 18        |
| 200 | Polyamines affect histamine synthesis during early stages of ILâ€3â€induced bone marrow cell<br>differentiation. Journal of Cellular Biochemistry, 2009, 108, 261-271.                                                 | 1.2 | 17        |
| 201 | LINE-1 methylation in leukocyte DNA, interaction with phosphatidylethanolamine N-methyltransferase variants and bladder cancer risk. British Journal of Cancer, 2014, 110, 2123-2130.                                  | 2.9 | 17        |
| 202 | Interindividual epigenetic variability: Sound or noise?. BioEssays, 2017, 39, 1700055.                                                                                                                                 | 1.2 | 17        |
| 203 | Role of BRD4 in hematopoietic differentiation of embryonic stem cells. Epigenetics, 2014, 9, 566-578.                                                                                                                  | 1.3 | 16        |
| 204 | Reinvigoration of Pinus radiata is associated with partial recovery of juvenile-like polyamine concentrations. Tree Physiology, 2003, 23, 205-209.                                                                     | 1.4 | 15        |
| 205 | Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic Î <sup>2</sup> -Cell Surrogates<br>through Epigenetic Regulation of <i>Pdx1</i> by Nitric Oxide. Cell Transplantation, 2016, 25, 1879-1892. | 1.2 | 15        |
| 206 | The Epigenetic Basis of Adaptation and Responses to Environmental Change: Perspective on Human Reproduction. Advances in Experimental Medicine and Biology, 2014, 753, 97-117.                                         | 0.8 | 15        |
| 207 | Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant<br>MLL-rearranged B cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .                     | 3.9 | 14        |
| 208 | Somatic embryogenic tissue establishment from mature Pinus nigra Arn. ssp. salzmannii embryos. In<br>Vitro Cellular and Developmental Biology - Plant, 1999, 35, 206-209.                                              | 0.9 | 13        |
| 209 | Factors involved in Pinus radiata D. Don. micrografting. Annals of Forest Science, 2002, 59, 155-161.                                                                                                                  | 0.8 | 13        |
| 210 | Epigenetic Code and Self-Identity. Advances in Experimental Medicine and Biology, 2012, 738, 236-255.                                                                                                                  | 0.8 | 13        |
| 211 | Title is missing!. Plant Growth Regulation, 2003, 40, 185-188.                                                                                                                                                         | 1.8 | 12        |
| 212 | Histone H3 and H4 Modification Profiles in a Rett Syndrome Mouse Model. Epigenetics, 2007, 2, 11-14.                                                                                                                   | 1.3 | 12        |
| 213 | Generation of a human iPSC line from a patient with an optic atrophy â€ <sup>~</sup> plus' phenotype due to a<br>mutation in the OPA1 gene. Stem Cell Research, 2016, 16, 673-676.                                     | 0.3 | 12        |
| 214 | Generation of a human iPSC line from a patient with Leigh syndrome caused by a mutation in the MT-ATP6 gene. Stem Cell Research, 2016, 16, 766-769.                                                                    | 0.3 | 12        |
| 215 | The transcription factor Slug represses <i>E-cadherin</i> expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 2016, 129, 1283-1283.     | 1.2 | 12        |
| 216 | SDHC Promoter Methylation, a Novel Pathogenic Mechanism in Parasympathetic Paragangliomas.<br>Journal of Clinical Endocrinology and Metabolism, 2018, 103, 295-305.                                                    | 1.8 | 12        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Downregulation of specific FBXW7 isoforms with differential effects in T-cell lymphoblastic lymphoma. Oncogene, 2019, 38, 4620-4636.                                                               | 2.6 | 12        |
| 218 | Physical exercise shapes the mouse brain epigenome. Molecular Metabolism, 2021, 54, 101398.                                                                                                        | 3.0 | 12        |
| 219 | Blood DNA Methylation Patterns in Older Adults With Evolving Dementia. Journals of Gerontology -<br>Series A Biological Sciences and Medical Sciences, 2022, 77, 1743-1749.                        | 1.7 | 12        |
| 220 | A Pinus radiata AAA-ATPase, the expression of which increases with tree ageing. Journal of Experimental Botany, 2004, 55, 1597-1599.                                                               | 2.4 | 11        |
| 221 | Epigenome-wide analysis reveals specific DNA hypermethylation of T cells during human hematopoietic differentiation. Epigenomics, 2018, 10, 903-923.                                               | 1.0 | 11        |
| 222 | Epigenetic silencing of E- and N-cadherins in the stroma of mouse thymic lymphomas. Carcinogenesis, 2006, 27, 1081-1089.                                                                           | 1.3 | 10        |
| 223 | HERG1A potassium channel is the predominant isoform in head and neck squamous cell carcinomas:<br>evidence for regulation by epigenetic mechanisms. Scientific Reports, 2016, 6, 19666.            | 1.6 | 10        |
| 224 | Epigenetics of Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2012, 741, 231-253.                                                                                            | 0.8 | 9         |
| 225 | Deregulation of the imprinted DLK1-DIO3 locus ncRNAs is associated with replicative senescence of human adipose-derived stem cells. PLoS ONE, 2018, 13, e0206534.                                  | 1.1 | 9         |
| 226 | The loss of NKX3.1 expression in testicularand prostatecancers is not caused by promoter hypermethylation. Molecular Cancer, 2005, 4, 8.                                                           | 7.9 | 8         |
| 227 | Generation of a human iPSC line from a patient with a mitochondrial encephalopathy due to mutations in the GFM1 gene. Stem Cell Research, 2016, 16, 124-127.                                       | 0.3 | 8         |
| 228 | DNA methylation reprogramming of human cancer cells by expression of a plant 5-methylcytosine DNA glycosylase. Epigenetics, 2018, 13, 95-107.                                                      | 1.3 | 8         |
| 229 | Epigenetic Deregulation of Protocadherin PCDHGC3 in Pheochromocytomas/Paragangliomas<br>Associated With SDHB Mutations. Journal of Clinical Endocrinology and Metabolism, 2019, 104,<br>5673-5692. | 1.8 | 7         |
| 230 | Epigenetics, the Role of DNA Methylation in Tree Development. Methods in Molecular Biology, 2012, 877, 277-301.                                                                                    | 0.4 | 6         |
| 231 | Negative neuronal differentiation of human adipose-derived stem cell clones. Regenerative Medicine, 2014, 9, 279-293.                                                                              | 0.8 | 6         |
| 232 | No genome-wide DNA methylation changes found associated with medium-term reduced graphene oxide exposure in human lung epithelial cells. Epigenetics, 2020, 15, 283-293.                           | 1.3 | 6         |
| 233 | Epigenetic Deregulation of the Histone Methyltransferase KMT5B Contributes to Malignant<br>Transformation in Glioblastoma. Frontiers in Cell and Developmental Biology, 2021, 9, 671838.           | 1.8 | 6         |
|     |                                                                                                                                                                                                    |     |           |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation.<br>SpringerPlus, 2013, 2, 392.                                                                                         | 1.2 | 5         |
| 236 | Generation of a human iPSC line from a patient with a defect of intergenomic communication. Stem Cell Research, 2016, 16, 120-123.                                                                                     | 0.3 | 5         |
| 237 | Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse. Molecular Biology and Evolution, 2021, 38, 3415-3435.                                                                                   | 3.5 | 5         |
| 238 | Basic Procedures for Epigenetic Analysis in Plant Cell and Tissue Culture. Methods in Molecular<br>Biology, 2012, 877, 325-341.                                                                                        | 0.4 | 4         |
| 239 | Epigenetics, Inflammation, and Aging. , 2014, , 85-101.                                                                                                                                                                |     | 4         |
| 240 | Epigenetic Drift and Aging. , 2010, , 257-273.                                                                                                                                                                         |     | 4         |
| 241 | Techniques to Study DNA Methylation and Histone Modification. , 2011, , 21-39.                                                                                                                                         |     | 3         |
| 242 | Generation of a human control iPSC line with a European mitochondrial haplogroup U background.<br>Stem Cell Research, 2016, 16, 88-91.                                                                                 | 0.3 | 3         |
| 243 | Epigenetics and Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis. , 2019, ,<br>461-489.                                                                                                  |     | 3         |
| 244 | Role of Epigenetics in Neural Differentiation: Implications for Health and Disease. , 2014, , 63-79.                                                                                                                   |     | 2         |
| 245 | Enhanced Detection of Viral RNA Species Using Fokl-Assisted Digestion of DNA Duplexes and DNA/RNA<br>Hybrids. Analytical Chemistry, 2022, 94, 6760-6770.                                                               | 3.2 | 2         |
| 246 | Classification of follicular-patterned thyroid lesions using a minimal set of epigenetic biomarkers.<br>European Journal of Endocrinology, 2022, 187, 335-347.                                                         | 1.9 | 2         |
| 247 | A Possible Role for Epigenetics in Age-Dependent Bone Diseases. Clinical Reviews in Bone and Mineral<br>Metabolism, 2010, 8, 95-99.                                                                                    | 1.3 | 1         |
| 248 | Commentaries on Viewpoint: Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. Journal of Applied Physiology, 2012, 112, 1084-1085.                        | 1.2 | 1         |
| 249 | Bioinformatics Tools in Epigenomics Studies. , 2016, , 73-107.                                                                                                                                                         |     | 1         |
| 250 | DNA Methylomes and Epigenetic Age Acceleration Associations with Poor Metabolic Control in T1D.<br>Biomedicines, 2021, 9, 13.                                                                                          | 1.4 | 1         |
| 251 | 801 Frequent Aberrant Expression of the Human Ether a Go-go (hEAG1) Potassium Channel in Head and<br>Neck Cancer –Pathobiological Mechanisms and Clinical Implications. European Journal of Cancer,<br>2012, 48, S191. | 1.3 | 0         |
| 252 | 1157 Association of LINE-1 Methylation With Risk of Bladder Cancer in the Spanish Population.<br>European Journal of Cancer, 2012, 48, S278.                                                                           | 1.3 | 0         |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | P0260 : Liver kinase B1 as an oncogenic driver in liver cancer. Journal of Hepatology, 2015, 62, S403.                                                                                        | 1.8 | 0         |
| 254 | Epigenetics: At the Crossroads Between Genetic and Environmental Determinants of Disease. , 2019, ,<br>105-128.                                                                               |     | 0         |
| 255 | Methylation of the Sclerostin <i>(SOST)</i> Gene in Serum Free DNA: A New Bone Biomarker?. Genetic<br>Testing and Molecular Biomarkers, 2021, 25, 42-47.                                      | 0.3 | 0         |
| 256 | Stability of Imprinting and Differentiation Capacity in NaÃ⁻ve Human Cells Induced by Chemical<br>Inhibition of CDK8 and CDK19. Cells, 2021, 10, 876.                                         | 1.8 | 0         |
| 257 | Quantitative Determination of 5-Methylcytosine DNA Content. , 2004, , 113-120.                                                                                                                |     | 0         |
| 258 | Impacto funcional de polimorfismos del gen de la esclerostina sobre la metilación de ADN y la<br>expresión génica. Revista De Osteoporosis Y Metabolismo Mineral, 2019, 11, 98-104.           | 0.3 | 0         |
| 259 | A Mouse Skin Multistage Carcinogenesis Model That Unmasks Epigenetic Lesions Responsible for Metastasis. , 2005, , 9-25.                                                                      |     | 0         |
| 260 | Pdx1 Is Transcriptionally Regulated by EGR-1 during Nitric Oxide-Induced Endoderm Differentiation of Mouse Embryonic Stem Cells. International Journal of Molecular Sciences, 2022, 23, 3920. | 1.8 | 0         |