
Renato S Lima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653070/publications.pdf Version: 2024-02-01

RENATO S LIMA

#	Article	IF	CITATIONS
1	Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochimica Acta, 2016, 219, 170-177.	5.2	41
2	Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response. ACS Sensors, 2017, 2, 1027-1034.	7.8	34
3	Fabrication of glass microchannels by xurography for electrophoresis applications. Analyst, The, 2013, 138, 1660.	3.5	31
4	Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue. ACS Sensors, 2018, 3, 716-726.	7.8	28
5	Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Analytical Chemistry, 2018, 90, 12377-12384.	6.5	28
6	Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations. Lab on A Chip, 2012, 12, 1959.	6.0	27
7	Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Applied Materials & Interfaces, 2022, 14, 22989-23001.	8.0	25
8	Contactless conductivity biosensor in microchip containing folic acid as bioreceptor. Lab on A Chip, 2012, 12, 1963.	6.0	24
9	Turbulence in microfluidics: Cleanroom-free, fast, solventless, and bondless fabrication and application in high throughput liquid-liquid extraction. Analytica Chimica Acta, 2016, 940, 73-83.	5.4	24
10	Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sensors, 2021, 6, 3125-3132.	7.8	24
11	Doping of a dielectric layer as a new alternative for increasing sensitivity of the contactless conductivity detection in microchips. Lab on A Chip, 2011, 11, 4148.	6.0	20
12	Converging Multidimensional Sensor and Machine Learning Toward High-Throughput and Biorecognition Element-Free Multidetermination of Extracellular Vesicle Biomarkers. ACS Sensors, 2020, 5, 1864-1871.	7.8	20
13	<i>In Situ</i> Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Applied Materials & Interfaces, 2022, 14, 2522-2533.	8.0	20
14	Microemulsification: An Approach for Analytical Determinations. Analytical Chemistry, 2014, 86, 9082-9090.	6.5	19
15	Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface. Analytical Chemistry, 2016, 88, 11199-11206.	6.5	17
16	3D micromixer for nanoliposome synthesis: a promising advance in high mass productivity. Lab on A Chip, 2021, 21, 2971-2985.	6.0	17
17	Ordinary microfluidic electrodes combined with bulk nanoprobe produce multidimensional electric double-layer capacitances towards metal ion recognition. Sensors and Actuators B: Chemical, 2020, 305, 127482.	7.8	16
18	Determination of glyphosate and AMPA on polyesterâ€ŧoner electrophoresis microchip with contactless conductivity detection. Electrophoresis, 2013, 34, 2107-2111.	2.4	15

Renato S Lima

#	Article	IF	CITATIONS
19	High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips. Analytica Chimica Acta, 2017, 951, 116-123.	5.4	15
20	Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS Applied Materials & Interfaces, 2021, 13, 35914-35923.	8.0	13
21	Portable platform for rapid and indirect photometric determination of water in ethanol fuel samples. Analytical Methods, 2014, 6, 9497-9502.	2.7	11
22	An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths. Analytica Chimica Acta, 2015, 875, 33-40.	5.4	11
23	Simple Solid-Phase Extraction Method for High Efficiency and Low-Cost Crude Oil Demulsification. Energy & Fuels, 2016, 30, 4667-4675.	5.1	11
24	Pencil graphite core for pattern recognition applications. Chemical Communications, 2019, 55, 4623-4626.	4.1	11
25	Real-Time and <i>In Situ</i> Monitoring of the Synthesis of Silica Nanoparticles. ACS Sensors, 2022, 7, 1045-1057.	7.8	11
26	Simple, rapid and, costâ€effective fabrication of PDMS electrophoresis microchips using poly(vinyl) Tj ETQq0 0 0	rgBT /Ove 2.4	rlock 10 Tf 5
	Toulo day as Asstand Healt Theory also and the std 2000 to std Datasents with Mitage flat days and		

27	Turbulence-Assisted High-Throughput Liquid–Liquid Extraction in Microfluidics and Ni(OH) ₂ Nanoparticles for Electrochemical Determination of Monoethylene Glycol Traces in Natural Gas Condensate. Energy & Fuels, 2018, 32, 6577-6583.	5.1	9
28	Gravity-assisted distillation on a chip: Fabrication, characterization, and applications. Analytica Chimica Acta, 2018, 1033, 128-136.	5.4	8
29	Distilling small volumes of crude oil. Fuel, 2021, 285, 119072.	6.4	8
30	Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a softâ€embossing protocol. Electrophoresis, 2020, 41, 1641-1650.	2.4	7
31	Microemulsification-based method: analysis of ethanol in fermentation broth of sugar cane. Analytical Methods, 2015, 7, 10061-10066.	2.7	5
32	Microemulsification-Based Method: Analysis of Monoethylene Glycol in Samples Related to Natural Gas Processing. Energy & Fuels, 2015, 29, 5649-5654.	5.1	5
33	Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS ₂ layers on gold surfaces. Nanoscale, 2022, 14, 6811-6821.	5.6	2
34	Intervening factors in the performance of a naked-eye microemulsification-based method and improvements in analytical frequency. Analytical Methods, 2017, 9, 3347-3355.	2.7	1