Hans Henrik Gad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1652609/publications.pdf

Version: 2024-02-01

35 papers

2,646 citations

20 h-index 377865 34 g-index

37 all docs

37 docs citations

37 times ranked

5007 citing authors

#	Article	IF	CITATIONS
1	Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 2020, 369, 712-717.	12.6	333
2	The Oligoadenylate Synthetase Family: An Ancient Protein Family with Multiple Antiviral Activities. Journal of Interferon and Cytokine Research, 2011, 31, 41-47.	1.2	243
3	<scp>IFN</scp> ĵ» is a potent antiâ€influenza therapeutic without the inflammatory side effects of <scp>IFN</scp> ĵ± treatment. EMBO Molecular Medicine, 2016, 8, 1099-1112.	6.9	228
4	Inhibition of SARS–CoV-2 by type I and type III interferons. Journal of Biological Chemistry, 2020, 295, 13958-13964.	3.4	220
5	IFN-l̂» prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. ELife, 2018, 7, .	6.0	198
6	Interferon-l̂» Is Functionally an Interferon but Structurally Related to the Interleukin-10 Family. Journal of Biological Chemistry, 2009, 284, 20869-20875.	3.4	176
7	Functional IRF3 deficiency in a patient with herpes simplex encephalitis. Journal of Experimental Medicine, 2015, 212, 1371-1379.	8.5	171
8	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
9	Human interferon-l̂»3 is a potent member of the type III interferon family. Genes and Immunity, 2009, 10, 125-131.	4.1	150
10	Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component. Journal of Virology, 2012, 86, 3121-3134.	3.4	98
11	Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature, 2021, 597, 114-118.	27.8	84
12	Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature Immunology, 2019, 20, 593-601.	14.5	68
13	The 2′-5′-Oligoadenylate Synthetase 3 Enzyme Potently Synthesizes the 2′-5′-Oligoadenylates Required RNase L Activation. Journal of Virology, 2014, 88, 14222-14231.	d for 3.4	59
14	Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Research, 2015, 43, 5236-5248.	14.5	57
15	2′3′-cGAMP triggers a STING- and NF-κB–dependent broad antiviral response in <i>Drosophila</i> Signaling, 2020, 13, .	² 3.6	46
16	Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells. Genes and Immunity, 2015, 16, 414-421.	4.1	44
17	The E2-E166K substitution restores Chikungunya virus growth in OAS3 expressing cells by acting on viral entry. Virology, 2012, 434, 27-37.	2.4	36
18	The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of Kaposi's sarcoma-associated herpesvirus (KSHV) and interacts with the KSHV ORF20 protein. PLoS Pathogens, 2018, 14, e1006937.	4.7	28

#	Article	IF	Citations
19	The Structure of Human Interferon Lambda and What It Has Taught Us. Journal of Interferon and Cytokine Research, 2010, 30, 565-571.	1.2	25
20	Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. Journal of Virology, 2019, 93, .	3.4	25
21	Lambda Interferons: New Cytokines with Old Functions. Pharmaceuticals, 2010, 3, 795-809.	3.8	21
22	A conserved sugar bridge connected to the WSXWS motif has an important role for transport of IL-21R to the plasma membrane. Genes and Immunity, 2015, 16, 405-413.	4.1	19
23	Defective interferon priming and impaired antiviral responses in a patient with an IRF7 variant and severe influenza. Medical Microbiology and Immunology, 2019, 208, 869-876.	4.8	19
24	Length dependent activation of OAS proteins by dsRNA. Cytokine, 2020, 126, 154867.	3.2	18
25	Selective Janus kinase inhibition preserves interferon-λ–mediated antiviral responses. Science Immunology, 2021, 6, .	11.9	16
26	Selection of a Novel and Highly Specific Tumor Necrosis Factor \hat{l}_{\pm} (TNF \hat{l}_{\pm}) Antagonist. Journal of Biological Chemistry, 2010, 285, 12096-12100.	3.4	15
27	The <i>IFNL4</i> Gene Is a Noncanonical Interferon Gene with a Unique but Evolutionarily Conserved Regulation. Journal of Virology, 2020, 94, .	3.4	14
28	Identification of an <i>IRF3</i> variant and defective antiviral interferon responses in a patient with severe influenza. European Journal of Immunology, 2019, 49, 2111-2114.	2.9	13
29	Systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome due to a CASP1 variant causing inflammasome hyperactivation. Rheumatology, 2020, 59, 3099-3105.	1.9	12
30	Species Specificity of Type III Interferon Activity and Development of a Sensitive Luciferase-Based Bioassay for Quantitation of Mouse Interferon-λ. Journal of Interferon and Cytokine Research, 2018, 38, 469-479.	1.2	11
31	Effective Interferon Lambda Treatment Regimen To Control Lethal MERS-CoV Infection in Mice. Journal of Virology, 2022, 96, e0036422.	3.4	8
32	Rapid Uptake and Inhibition of Viral Propagation by Extracellular OAS1. Journal of Interferon and Cytokine Research, 2015, 35, 359-366.	1.2	7
33	Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Frontiers in Immunology, 2021, 12, 749325.	4.8	5
34	The Influence of the rs30461 Single Nucleotide Polymorphism on IFN-λ1 Activity and Secretion. Journal of Interferon and Cytokine Research, 2019, 39, 661-667.	1.2	4
35	Chikungunya Virus Envelope Protein E2 Provides aÂVector for Targeted Antigen Delivery to HumanÂDermal CD14+ Dendritic Cells. Journal of Investigative Dermatology, 2021, 141, 2985-2989.e5.	0.7	0