ZsÃ³fia Lengyel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1652019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions. ACS Catalysis, 2018, 8, 59-62.	11.2	81
2	The Sigma-2 Receptor/TMEM97, PGRMC1, and LDL Receptor Complex Are Responsible for the Cellular Uptake of Al²42 and Its Protein Aggregates. Molecular Neurobiology, 2020, 57, 3803-3813.	4.0	49
3	Nine-Residue Peptide Self-Assembles in the Presence of Silver to Produce a Self-Healing, Cytocompatible, Antimicrobial Hydrogel. ACS Applied Materials & Interfaces, 2020, 12, 17091-17099.	8.0	36
4	ldentification of a nanomolar affinity α-synuclein fibril imaging probe by ultra-high throughput <i>in silico</i> screening. Chemical Science, 2020, 11, 12746-12754.	7.4	30
5	Minimalist <i>de Novo</i> Design of Protein Catalysts. ACS Catalysis, 2019, 9, 9265-9275.	11.2	28
6	Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS Nano, 2019, 13, 9292-9297.	14.6	25
7	Synthesis and characterization of high affinity fluorogenic α-synuclein probes. Chemical Communications, 2020, 56, 3567-3570.	4.1	24
8	The effect of conjugation on antitumor activity of vindoline derivatives with octaarginine, a cellâ€penetrating peptide. Journal of Peptide Science, 2018, 24, e3118.	1.4	15
9	Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples. Frontiers in Aging Neuroscience, 2021, 13, 704041.	3.4	14
10	Synthesis and in vitro Antitumor Effect of New Vindoline Derivatives Coupled with Amino Acid Esters. Heterocycles, 2013, 87, 2299.	0.7	13
11	Preparation and Screening of Catalytic Amyloid Assemblies. Methods in Molecular Biology, 2018, 1777, 261-270.	0.9	10
12	Synergistic Interactions Are Prevalent in Catalytic Amyloids. ChemBioChem, 2020, 21, 2611-2614.	2.6	10
13	Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson's Disease. Molecular Neurobiology, 2021, 58, 3641-3652.	4.0	10
14	Functional tuning of the catalytic residue p <i>K</i> _a in a <i>de novo</i> designed esterase. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1656-1665.	2.6	8
15	Uno Ferro, a de novo Designed Protein, Binds Transition Metals with High Affinity and Stabilizes Semiquinone Radical Anion. Chemistry - A European Journal, 2019, 25, 15252-15256.	3.3	7
16	PARkinson's: From cellular mechanisms to potential therapeutics. , 2021, , 107968.		4
17	Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. ChemCatChem, 2019, 11, 1425-1430.	3.7	3
18	Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. ChemBioChem, 2021, 22, 585-591.	2.6	3

#	Article	IF	CITATIONS
19	Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. ChemCatChem, 2019, 11, 1377-1377.	3.7	0