Satoshi Ichikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/165189/publications.pdf Version: 2024-02-01

SATOSHI ICHIKANAA

#	Article	IF	CITATIONS
1	Design, synthesis and biological evaluation of simplified analogues of MraY inhibitory natural product with rigid scaffold. Bioorganic and Medicinal Chemistry, 2022, 55, 116556.	3.0	6
2	Solid-Phase Total Synthesis of Plusbacin A ₃ . Organic Letters, 2022, 24, 2253-2257.	4.6	3
3	Design, synthesis and conformation-activity relationship analysis of LNA/BNA-type 5′-O-aminoribosyluridine as MraY inhibitors. Bioorganic and Medicinal Chemistry, 2022, 65, 116744.	3.0	4
4	Total synthesis of pseudouridimycin and its epimer <i>via</i> Ugi-type multicomponent reaction. Chemical Communications, 2022, 58, 7956-7959.	4.1	3
5	Structure, solubility, and permeability relationships in a diverse middle molecule library. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127847.	2.2	3
6	Solid-phase synthesis of fluorescent analogues of Park's nucleotide, lipid I and lipid II. Tetrahedron Letters, 2021, 73, 153101.	1.4	6
7	Synthesis and biological evaluation of a MraY selective analogue of tunicamycins. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 349-364.	1.1	3
8	Development of cyclic peptide derivatives from the N-terminal region of LANA for targeting the nucleosome acidic patch. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126839.	2.2	0
9	Elucidating the Structural Requirement of Uridylpeptide Antibiotics for Antibacterial Activity. Journal of Medicinal Chemistry, 2020, 63, 9803-9827.	6.4	6
10	Total Synthesis of Echinomycin and Its Analogues. Organic Letters, 2020, 22, 4217-4221.	4.6	7
11	A Synthesis Strategy for the Production of a Macrolactone of Gulmirecin A via a Ni(0)-Mediated Reductive Cyclization Reaction. Organic Letters, 2020, 22, 2697-2701.	4.6	9
12	Total Synthesis of Acaulide and Acaulone A. Organic Letters, 2020, 22, 5545-5549.	4.6	2
13	Repair of DNA damage induced by the novel nucleoside analogue CNDAG through homologous recombination. Cancer Chemotherapy and Pharmacology, 2020, 85, 661-672.	2.3	2
14	Novel adenosine-derived inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase. Journal of Antibiotics, 2019, 72, 934-942.	2.0	2
15	Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nature Communications, 2019, 10, 2917.	12.8	49
16	Tunicamycin: chemical synthesis and biosynthesis. Journal of Antibiotics, 2019, 72, 924-933.	2.0	18
17	Synthesis of All Stereoisomers of Monomeric Spectomycin A1/A2 and Evaluation of Their Protein SUMOylationâ€Inhibitory Activity. Chemistry - A European Journal, 2019, 25, 8387-8392.	3.3	5
18	Structural requirement of tunicamycin V for MraY inhibition. Bioorganic and Medicinal Chemistry, 2019, 27, 1714-1719.	3.0	12

2

#	Article	IF	CITATIONS
19	Synthesis and Medicinal Chemistry of Muraymycins, Nucleoside Antibiotics. Chemical and Pharmaceutical Bulletin, 2018, 66, 123-131.	1.3	10
20	Total Synthesis of Plusbacin A ₃ and Its Dideoxy Derivative Using a Solvent-Dependent Diastereodivergent Joullié–Ugi Three-Component Reaction. Journal of Organic Chemistry, 2018, 83, 7085-7101.	3.2	21
21	GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nature Structural and Molecular Biology, 2018, 25, 217-224.	8.2	104
22	Mechanismâ€Based Inhibitor of DNA Cytosineâ€5 Methyltransferase by a S _N Ar Reaction with an Oligodeoxyribonucleotide Containing a 2â€Aminoâ€4â€Halopyridineâ€ <i>C</i> â€Nucleoside. ChemBioChem, 20 19, 865-872.	18,6	9
23	Total Synthesis of Tunicamycin V. Organic Letters, 2018, 20, 256-259.	4.6	36
24	Insight into the recognition mechanism of DNA cytosine-5 methyltransferases (DNMTs) by incorporation of acyclic 5-fluorocytosine (FC) nucleosides into DNA. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2189-2194.	2.2	1
25	Solid-Phase Modular Synthesis of Park Nucleotide and Lipids I and II Analogues. Chemical and Pharmaceutical Bulletin, 2018, 66, 84-95.	1.3	10
26	Study of the structure-activity relationship of polymyxin analogues. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2713-2716.	2.2	10
27	Ribavirin-related compounds exert in vitro inhibitory effects toward rabies virus. Antiviral Research, 2018, 154, 1-9.	4.1	21
28	Improvement of S N Ar Reaction Rate by an Electronâ€Withdrawing Group in the Crosslinking of DNA Cytosineâ€5 Methyltransferase by a Covalent Oligodeoxyribonucleotide Inhibitor. ChemBioChem, 2018, 19, 1866-1872.	2.6	3
29	Potent anti-tumor activity of a syringolin analog in multiple myeloma: a dual inhibitor of proteasome activity targeting β2 and β5 subunits. Oncotarget, 2018, 9, 9975-9991.	1.8	7
30	Divergent synthesis of kinase inhibitor derivatives, leading to discovery of selective Gck inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2144-2147.	2.2	0
31	Impact of the structures of macrocyclic Michael acceptors on covalent proteasome inhibition. Chemical Science, 2017, 8, 6959-6963.	7.4	5
32	Total Synthesis and Antibacterial Investigation of Plusbacin A ₃ . Organic Letters, 2017, 19, 3771-3774.	4.6	19
33	Chemical Screening Identifies EUrd as a Novel Inhibitor Against Temozolomide-Resistant Glioblastoma-Initiating Cells. Stem Cells, 2016, 34, 2016-2025.	3.2	9
34	Function-Oriented Synthesis: How to Design Simplified Analogues of Antibacterial Nucleoside Natural Products?. Chemical Record, 2016, 16, 1106-1115.	5.8	25
35	Revisited Mechanistic Implications of the Joullié–Ugi Three-Component Reaction. Organic Letters, 2016, 18, 2552-2555.	4.6	36
36	Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature, 2016, 533, 557-560.	27.8	96

#	Article	IF	CITATIONS
37	Design, Synthesis, and Biological Activity of Isosyringolin A. Organic Letters, 2016, 18, 2312-2315.	4.6	11
38	Design, Synthesis and Biological Evaluation of a Structurally Simplified Syringolin A Analogues. Chemical and Pharmaceutical Bulletin, 2016, 64, 811-816.	1.3	3
39	An oligodeoxyribonucleotide containing 5-formyl-2′-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs). Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5395-5398.	2.2	7
40	Natural Product Synthesis by Multicomponent Reaction and Structure-activity Relationship Study. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 426-440.	0.1	2
41	Design, synthesis and biological evaluation of 5′-C-piperidinyl-5′-O-aminoribosyluridines as potential antibacterial agents. Organic and Biomolecular Chemistry, 2015, 13, 7720-7735.	2.8	15
42	Carbacaprazamycins: Chemically Stable Analogues of the Caprazamycin Nucleoside Antibiotics. ACS Infectious Diseases, 2015, 1, 151-156.	3.8	31
43	Structure–activity relationship study of syringolin A as a potential anticancer agent. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4872-4877.	2.2	9
44	Synthesis of isoxazolidine-containing uridine derivatives as caprazamycin analogues. Organic and Biomolecular Chemistry, 2015, 13, 1187-1197.	2.8	27
45	Antibacterial Nucleoside Natural Products Inhibiting Phospho-MurNAc-Pentapeptide Translocase; Chemistry and Structure-Activity Relationship Current Medicinal Chemistry, 2015, 22, 3951-3979.	2.4	39
46	Total Synthesis of Syringolinâ€A and Improvement of Its Biological Activity. Angewandte Chemie - International Edition, 2014, 53, 4836-4839.	13.8	21
47	Functionâ€Oriented Synthesis of Liponucleoside Antibiotics. European Journal of Organic Chemistry, 2014, 2014, 1836-1840.	2.4	11
48	Expansion of Antibacterial Spectrum of Muraymycins toward <i>Pseudomonas aeruginosa</i> . ACS Medicinal Chemistry Letters, 2014, 5, 556-560.	2.8	38
49	Total Synthesis of Quinaldopeptin and Its Analogues. Journal of Organic Chemistry, 2013, 78, 12662-12670.	3.2	16
50	Tris(azidoethyl)amine Hydrochloride; a Versatile Reagent for Synthesis of Functionalized Dumbbell Oligodeoxynucleotides. Organic Letters, 2013, 15, 694-697.	4.6	17
51	Synthesis of <i>C</i> -Glycosyl Pyrrolo[3,4- <i>c</i>]carbazole-1,3(2 <i>H</i> ,6 <i>H</i>)-diones as a Scaffold for Check Point Kinase 1 Inhibitors. Journal of Organic Chemistry, 2013, 78, 12065-12075.	3.2	20
52	Synthesis of pacidamycin analogues via an Ugi-multicomponent reaction. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4810-4815.	2.2	19
53	Total Synthesis and Biological Evaluation of Pacidamycin D and Its 3′-Hydroxy Analogue. Journal of Organic Chemistry, 2012, 77, 1367-1377.	3.2	29
54	Synthesis ofl-epi-Capreomycidine Derivatives via C–H Amination. Organic Letters, 2011, 13, 4028-4031.	4.6	22

#	Article	IF	CITATIONS
55	Development of the Carboxamide Protecting Group, 4-(<i>tert</i> -Butyldimethylsiloxy)-2-methoxybenzyl. Journal of Organic Chemistry, 2011, 76, 9278-9293.	3.2	20
56	Structural Feature of Bent DNA Recognized by HMGB1. Journal of the American Chemical Society, 2011, 133, 5788-5790.	13.7	10
57	Total Synthesis of Pacidamycin D by Cu(I)-Catalyzed Oxy Enamide Formation. Organic Letters, 2011, 13, 5240-5243.	4.6	32
58	Mechanistic Analysis of Muraymycin Analogues: A Guide to the Design of MraY Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 8421-8439.	6.4	79
59	Development of Antibacterial Agents Active against Drug-resistant Bacterial Pathogens Based on Total Synthesis of Nucleoside Natural Products. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1020-1033.	0.1	3
60	Efficient synthesis of Hsp90 inhibitor dimers as potential antitumor agents. Bioorganic and Medicinal Chemistry, 2010, 18, 5732-5737.	3.0	4
61	Synthesis and evaluation of 5-substituted 9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as check point 1 kinase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 7878-7889.	3.0	6
62	A New Arylsulfate Sulfotransferase Involved in Liponucleoside Antibiotic Biosynthesis in Streptomycetes. Journal of Biological Chemistry, 2010, 285, 12684-12694.	3.4	34
63	Function-Oriented Synthesis of Simplified Caprazamycins: Discovery of Oxazolidine-Containing Uridine Derivatives as Antibacterial Agents against Drug-Resistant Bacteria. Journal of Medicinal Chemistry, 2010, 53, 3793-3813.	6.4	79
64	Total Synthesis of (â^')-Muraymycin D2 and Its Epimer. Journal of Organic Chemistry, 2010, 75, 1366-1377.	3.2	85
65	Synthesis and Biological Evaluation of Muraymycin Analogues Active against Anti-Drug-Resistant Bacteria. ACS Medicinal Chemistry Letters, 2010, 1, 258-262.	2.8	63
66	NMR studies of DNA recognition mechanism of HMGB1 protein. Nucleic Acids Symposium Series, 2009, 53, 89-90.	0.3	2
67	9-(2-C-Cyano-2-deoxy-Â-D-arabino-pentofuranosyl)guanine, a potential antitumor agent against B-lymphoma infected with kaposi's sarcoma-associated herpesvirus. Nucleic Acids Symposium Series, 2009, 53, 95-96.	0.3	1
68	Design and synthesis of 3′,5′-ansa-adenosines as potential Hsp90 inhibitors. Tetrahedron Letters, 2009, 50, 5102-5106.	1.4	9
69	Design and synthesis of diketopiperazine and acyclic analogs related to the caprazamycins and liposidomycins as potential antibacterial agents. Bioorganic and Medicinal Chemistry, 2008, 16, 428-436.	3.0	47
70	Structure–activity relationship of truncated analogs of caprazamycins as potential anti-tuberculosis agents. Bioorganic and Medicinal Chemistry, 2008, 16, 5123-5133.	3.0	57
71	Synthesis of Hsp90 inhibitor dimers as potential antitumor agents. Bioorganic and Medicinal Chemistry, 2008, 16, 5862-5870.	3.0	12
72	Synthesis of Caprazamycin Analogues and Their Structureâ [~] 'Activity Relationship for Antibacterial Activity. Journal of Organic Chemistry, 2008, 73, 569-577.	3.2	87

#	Article	IF	CITATIONS
73	Fine Synthetic Nucleoside Chemistry Based on Nucleoside Natural Products Synthesis. Chemical and Pharmaceutical Bulletin, 2008, 56, 1059-1072.	1.3	28
74	Highly β-Selective C-Allylation of a Ribofuranoside Controlling Steric Hindrance in the Transition State. Organic Letters, 2008, 10, 5107-5110.	4.6	19
75	Triazole-Linked Dumbbell Oligodeoxynucleotides with NF-κB Binding Ability as Potential Decoy Molecules. Journal of Organic Chemistry, 2008, 73, 1842-1851.	3.2	71
76	NMR structural study of DNA oligomers containing alkylene crosslinked cyclic 2'-deoxyuridylate dimers. Nucleic Acids Symposium Series, 2008, 52, 181-182.	0.3	1
77	Chemistry and Structure-Activity Relationship of Antibacterial Nucleoside Natural Products. Nucleic Acids Symposium Series, 2008, 52, 77-78.	0.3	4
78	Synthetic study of muraymycins using Ugi-four component reaction. Nucleic Acids Symposium Series, 2008, 52, 557-558.	0.3	16
79	Stereoselective Glycosylation Based on the Conformational Restriction of Pyranoses. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 50-60.	0.1	4
80	Nucleoside natural products and related analogs with potential therapeutic properties as antibacterial and antiviral agents. Expert Opinion on Therapeutic Patents, 2007, 17, 487-498.	5.0	32
81	Modular Bent DNAs: A New Class of Artificial DNAs with a Protein Binding Abilityâ€. Journal of the American Chemical Society, 2007, 129, 10300-10301.	13.7	17
82	Development of a Highly β-Selective Ribosylation Reaction without Using Neighboring Group Participation:  Total Synthesis of (+)-Caprazol, a Core Structure of Caprazamycins. Journal of Organic Chemistry, 2007, 72, 9936-9946.	3.2	79
83	Total synthesis of (+)-FR-900493 and establishment of its absolute stereochemistry. Tetrahedron, 2007, 63, 2798-2804.	1.9	30
84	Synthesis of 3′-β-carbamoylmethylcytidine (CAMC) and its derivatives as potential antitumor agents. Organic and Biomolecular Chemistry, 2006, 4, 1284.	2.8	10
85	Synthesis of galactose-linked uridine derivatives with simple linkers as potential galactosyltransferase inhibitors. Tetrahedron, 2005, 61, 5837-5842.	1.9	16
86	Total Synthesis of Caprazol, a Core Structure of the Caprazamycin Antituberculosis Antibiotics. Angewandte Chemie - International Edition, 2005, 44, 1854-1856.	13.8	100
87	SYNTHESIS OF COMPLEX NUCLEOSIDE ANTIBIOTICS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 319-329.	1.1	15
88	Synthesis of Tunicaminyluracil Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 239-253.	1.1	19
89	The First Radical Method for the Introduction of an Ethynyl Group Using a Silicon Tether and Its Application to the Synthesis of 2'-Deoxy-2'-C-ethynylnucleosides1. Journal of Organic Chemistry, 2003, 68, 3465-3475.	3.2	48
90	Fundamental Role of the Fostriecin Unsaturated Lactone and Implications for Selective Protein Phosphatase Inhibition. Journal of the American Chemical Society, 2003, 125, 15694-15695.	13.7	110

#	Article	IF	CITATIONS
91	A Highly Stereoselective Samarium Diiodide-Promoted Aldol Reaction with 1â€~-Phenylseleno-2â€~-keto Nucleosides. Synthesis of 1â€~α-Branched Uridine Derivatives. Journal of Organic Chemistry, 2002, 67, 7706-7715.	3.2	29
92	A New Entry to the Stereoselective Introduction of an Ethynyl Group by a Radical Reaction: Synthesis of the Potential Antimetabolite 2â€2-Deoxy-2â€2-C-ethynyluridine. Angewandte Chemie - International Edition, 2002, 41, 4748-4750.	13.8	19
93	Total Synthesis of Fostriecin (CI-920). Journal of the American Chemical Society, 2001, 123, 4161-4167.	13.7	109
94	Synthesis of Pyrimidine 2'-Deoxy Ribonucleosides Branched at the 2'-Position via Radical Atom-Transfer Cyclization Reaction with a Vinylsilyl Group as a Radical-Acceptor Tether1. Journal of Organic Chemistry, 2000, 65, 8988-8996.	3.2	31
95	Total Syntheses of Thiocoraline and BE-22179:Â Establishment of Relative and Absolute Stereochemistry. Journal of the American Chemical Society, 2000, 122, 2956-2957.	13.7	40
96	The First Synthesis of Herbicidin B. Stereoselective Construction of the Tricyclic Undecose Moiety by a Conformational Restriction Strategy Using Steric Repulsion between Adjacent Bulky Silyl Protecting Groups on a Pyranose Ringâ€. Journal of the American Chemical Society, 1999, 121, 10270-10280.	13.7	86
97	A novel aldol-type C-glycosidation reaction promoted by samarium diiodide. Regioselective generation of a ulose-1-enolate from phenyl 3,4,6-tri-O-benzyl-1-thio-β-d-arabino-hexopyranosid-2-ulose. Tetrahedron Letters, 1998, 39, 4525-4528.	1.4	24
98	Stereo- and Regioselective Introduction of 1- or 2-Hydroxyethyl Group via Intramolecular Radical Cyclization Reaction with a Novel Silicon-Containing Tether. An Efficient Synthesis of 4‴α-Branched 2â€~-Deoxyadenosines1. Journal of Organic Chemistry, 1998, 63, 746-754.	3.2	59
99	Nucleosides and Nucleotides. 163. Synthesis of 3â€~-β-Branched Uridine Derivatives via Intramolecular Reformatsky-Type Reaction Promoted by Samarium Diiodide1. Journal of Organic Chemistry, 1997, 62, 1368-1375.	3.2	34
100	A Novel Ring-Enlargement Reaction of (3-Oxa-2-silacyclopentyl)methyl Radicals into 4-Oxa-3-silacyclohexyl Radicals. Stereoselective Introduction of a Hydroxyethyl GroupviaUnusual 6-Endo-Cyclization Products Derived from 3-Oxa-4-silahexenyl Radicals and Its Application to the Synthesis of a 4â€~-α-Branched Nucleoside1. Journal of Organic Chemistry, 1997, 62, 5676-5677.	3.2	46