Brian W Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1651761/publications.pdf Version: 2024-02-01

RDIAN WWONC

#	Article	IF	CITATIONS
1	NRF2 assessment in discarded liver allografts: A role in allograft function and salvage. American Journal of Transplantation, 2022, 22, 58-70.	4.7	10
2	Identification of kidney injury–released circulating osteopontin as causal agent of respiratory failure. Science Advances, 2022, 8, eabm5900.	10.3	34
3	Targeting fatty acid Î2-oxidation impairs monocyte differentiation and prolongs heart allograft survival. JCI Insight, 2022, 7, .	5.0	7
4	A Novel Multidrug Combination Mitigates Rat Liver Steatosis Through Activating AMPK Pathway During Normothermic Machine Perfusion. Transplantation, 2021, 105, e215-e225.	1.0	11
5	Dual Lactate Clearance in the Viability Assessment of Livers Donated After Circulatory Death With Ex Situ Normothermic Machine Perfusion. Transplantation Direct, 2021, 7, e789.	1.6	5
6	Combined abdominal heterotopic heart and aorta transplant model in mice. PLoS ONE, 2020, 15, e0230649.	2.5	2
7	Lymphatic vessels in solid organ transplantation and immunobiology. American Journal of Transplantation, 2020, 20, 1992-2000.	4.7	20
8	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
9	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
10	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
11	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
12	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
13	Combined abdominal heterotopic heart and aorta transplant model in mice. , 2020, 15, e0230649.		0
14	Endothelial Cell Metabolism. Physiological Reviews, 2018, 98, 3-58.	28.8	351
15	Live imaging reveals a conserved role of fatty acid β-oxidation in early lymphatic development in zebrafish. Biochemical and Biophysical Research Communications, 2018, 503, 26-31.	2.1	3
16	Emerging Concepts in Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. Developmental Cell, 2018, 45, 289-301.	7.0	54
17	Quiescent Endothelial Cells Upregulate Fatty Acid β-Oxidation for Vasculoprotection via Redox Homeostasis. Cell Metabolism, 2018, 28, 881-894.e13.	16.2	174
18	Bronchus-associated lymphoid tissue–resident Foxp3+ T lymphocytes prevent antibody-mediated lung rejection. Journal of Clinical Investigation, 2018, 129, 556-568.	8.2	60

BRIAN W WONG

#	Article	IF	CITATIONS
19	Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO Journal, 2017, 36, 2187-2203.	7.8	186
20	The role of fatty acid \hat{I}^2 -oxidation in lymphangiogenesis. Nature, 2017, 542, 49-54.	27.8	240
21	Glycolytic regulation of cell rearrangement in angiogenesis. Nature Communications, 2016, 7, 12240.	12.8	131
22	Metabolic Adaptations in Diabetic Endothelial Cells. Circulation Journal, 2015, 79, 934-941.	1.6	40
23	Incomplete and transitory decrease of glycolysis. Cell Cycle, 2014, 13, 16-22.	2.6	52
24	Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis. Cell Metabolism, 2014, 19, 37-48.	16.2	429
25	Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511, 167-176.	27.8	377
26	Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell, 2013, 154, 651-663.	28.9	1,117
27	Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends in Biochemical Sciences, 2013, 38, 3-11.	7.5	123
28	Treating Diabetes by Blocking a Vascular Growth Factor. Cell Metabolism, 2012, 16, 553-555.	16.2	11
29	The Biological Role of Inflammation in Atherosclerosis. Canadian Journal of Cardiology, 2012, 28, 631-641.	1.7	151
30	Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. Journal of Heart and Lung Transplantation, 2011, 30, 955-62.	0.6	10
31	Sialyl Lewis X modification of the epidermal growth factor receptor regulates receptor function during airway epithelial wound repair. Clinical and Experimental Allergy, 2010, 40, 607-618.	2.9	9
32	Pairwise network mechanisms in the host signaling response to coxsackievirus B3 infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17053-17058.	7.1	42
33	Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovascular Research, 2010, 85, 347-356.	3.8	59
34	Despite Antiatherogenic Metabolic Characteristics, SCD1-Deficient Mice Have Increased Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 341-347.	2.4	95
35	ATP-Binding Cassette Transporter A1 Expression and Apolipoprotein A-I Binding Are Impaired in Intima-Type Arterial Smooth Muscle Cells. Circulation, 2009, 119, 3223-3231.	1.6	88
36	Vascular Endothelial Growth Factor Increases Human Cardiac Microvascular Endothelial Cell Permeability to Low-Density Lipoproteins. Journal of Heart and Lung Transplantation, 2009, 28, 950-957.	0.6	11

BRIAN W WONG

#	Article	IF	CITATIONS
37	Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Letters, 2007, 581, 879-884.	2.8	18
38	Versican: signaling to transcriptional control pathwaysThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum Canadian Journal of Physiology and Pharmacology, 2006, 84, 77-92.	1.4	99
39	Antisense DNA and RNA: Potential Therapeutics for Viral Infection. Anti-Infective Agents in Medicinal Chemistry, 2006, 5, 367-377.	0.6	0
40	Inhibition of glycogen synthase kinase 3β suppresses coxsackievirus-induced cytopathic effect and apoptosis via stabilization of β-catenin. Cell Death and Differentiation, 2005, 12, 1097-1106.	11.2	58
41	Gamma Interferon-Inducible Protein 10 Induces HeLa Cell Apoptosis through a p53-Dependent Pathway Initiated by Suppression of Human Papillomavirus Type 18 E6 and E7 Expression. Molecular and Cellular Biology, 2005, 25, 6247-6258.	2.3	63
42	Regulation of the Versican Promoter by the β-Catenin-T-cell Factor Complex in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 13019-13028.	3.4	77
43	Progress in heart transplantation. Cardiovascular Pathology, 2005, 14, 176-180.	1.6	17
44	Perforin Mediates Endothelial Cell Death and Resultant Transplant Vascular Disease in Cardiac Allografts. American Journal of Pathology, 2004, 165, 127-133.	3.8	53
45	Overexpression of Interferon-Î ³ -inducible GTPase Inhibits Coxsackievirus B3-induced Apoptosis through the Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway and Inhibition of Viral Replication. Journal of Biological Chemistry, 2003, 278, 33011-33019.	3.4	55
46	Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovascular Pathology, 2002, 11, 332-338.	1.6	129