Marie Carriere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1651435/publications.pdf

Version: 2024-02-01

		109264	88593
89	5,080	35	70
papers	citations	h-index	g-index
93	93	93	7746
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. Environmental Science: Nano, 2021, 8, 806-821.	2.2	20
2	Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis. Nanoscale Advances, 2021, 3, 6213-6222.	2.2	7
3	Towards the development of safer by design TiO ₂ -based photocatalytic paint: impacts and performances. Environmental Science: Nano, 2021, 8, 758-772.	2.2	9
4	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.	6.2	7
5	Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Particle and Fibre Toxicology, 2021, 18, 26.	2.8	24
6	Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials, 2021, 11, 65.	1.9	34
7	How Reversible Are the Effects of Fumed Silica on Macrophages? A Proteomics-Informed View. Nanomaterials, 2020, 10, 1939.	1.9	7
8	Toxicity to RAW264.7 Macrophages of Silica Nanoparticles and the E551 Food Additive, in Combination with Genotoxic Agents. Nanomaterials, 2020, 10, 1418.	1.9	16
9	One-Step Soft Chemical Synthesis of Magnetite Nanoparticles under Inert Gas Atmosphere. Magnetic Properties and In Vitro Study. Nanomaterials, 2020, 10, 1500.	1.9	13
10	Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials, 2020, 10, 2132.	1.9	17
11	TiO2 genotoxicity: An update of the results published over the last six years. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 854-855, 503198.	0.9	12
12	The longer the worse: a combined proteomic and targeted study of the long-term <i>versus</i> short-term effects of silver nanoparticles on macrophages. Environmental Science: Nano, 2020, 7, 2032-2046.	2.2	11
13	Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Advances, 2020, 2, 3632-3655.	2.2	63
14	Intracellular Localization of an Osmocenylâ€Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation Xâ€ray Fluorescence Nanoimaging. Angewandte Chemie - International Edition, 2019, 58, 3461-3465.	7.2	25
15	Gallium – a versatile element for tuning the photoluminescence properties of InP quantum dots. Chemical Communications, 2019, 55, 1663-1666.	2.2	35
16	Intracellular Localization of an Osmocenylâ€Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation Xâ€ray Fluorescence Nanoimaging. Angewandte Chemie, 2019, 131, 3499-3503.	1.6	11
17	Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Frontiers in Chemistry, 2019, 7, 466.	1.8	32
18	The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells <i>in vitro</i> . Environmental Science: Nano, 2019, 6, 1549-1561.	2.2	40

#	Article	IF	Citations
19	Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles. Nanoscale, 2019, 11, 9341-9352.	2.8	19
20	How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environmental Science: Nano, 2019, 6, 3133-3157.	2.2	21
21	Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 845, 402980.	0.9	45
22	Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 2017, 7, 40373.	1.6	309
23	Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale, 2017, 9, 9641-9658.	2.8	31
24	Continuous $\langle i \rangle$ in vitro $\langle i \rangle$ exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology, 2017, 11, 1-11.	1.6	93
25	Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis, 2017, 32, 203-213.	1.0	49
26	Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis, 2017, 32, 161-172.	1.0	69
27	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	23.0	469
28	Visualization, quantification and coordination of Ag ⁺ ions released from silver nanoparticles in hepatocytes. Nanoscale, 2016, 8, 17012-17021.	2.8	68
29	Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology, 2016, 10, 913-923.	1.6	91
30	Different <i>in vitro</i> exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology, 2016, 10, 586-596.	1.6	26
31	A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. Journal of Proteomics, 2016, 134, 174-185.	1.2	41
32	Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: A proteomic view. Journal of Proteomics, 2016, 134, 163-173.	1.2	37
33	XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorganic Chemistry, 2015, 54, 11688-11696.	1.9	31
34	Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale, 2015, 7, 7352-7360.	2.8	64
35	Exposure-dependent Ag ⁺ release from silver nanoparticles and its complexation in AgS ₂ sites in primary murine macrophages. Nanoscale, 2015, 7, 7323-7330.	2.8	54
36	Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale, 2015, 7, 15904-15914.	2.8	76

3

#	Article	IF	CITATIONS
37	Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages. PLoS ONE, 2015, 10, e0124496.	1.1	58
38	Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach. Nanoscale, 2014, 6, 6102-6114.	2.8	49
39	Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Particle and Fibre Toxicology, 2014, 11, 13.	2.8	225
40	Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses. Molecular and Cellular Proteomics, 2013, 12, 3108-3122.	2.5	59
41	Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology, 2012, 6, 501-513.	1.6	183
42	Cytotoxic and Genotoxic Impact of TiO ₂ Nanoparticles on A549 Cells. Journal of Biomedical Nanotechnology, 2011, 7, 22-23.	0.5	20
43	Translocation of TiO2 nanoparticles through different models of gastrointestinal epithelium. Toxicology Letters, 2011, 205, S155.	0.4	0
44	Dispersion of Aeroxil P25 TiO ₂ Nanoparticle in Media of Biological Interest for the Culture of Eukaryotic Cells. Journal of Biomedical Nanotechnology, 2011, 7, 24-25.	0.5	2
45	Histidine 416 of the periplasmic binding protein NikA is essential for nickel uptake in <i>Escherichia coli</i> . FEBS Letters, 2011, 585, 711-715.	1.3	22
46	Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: The transferrin case. Bioorganic and Medicinal Chemistry, 2011, 19, 4135-4143.	1.4	82
47	Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. Journal of Nanoparticle Research, 2010, 12, 61-73.	0.8	111
48	A nickel ABC-transporter of Staphylococcus aureus is involved in urinary tract infection. Molecular Microbiology, 2010, 77, 1246-1260.	1.2	77
49	A nickel ABCâ€transporter of <i>Staphylococcus aureus</i> is involved in urinary tract infection. Molecular Microbiology, 2010, 78, 788-788.	1.2	1
50	The <i>Helicobacter pylori</i> GroES Cochaperonin HspA Functions as a Specialized Nickel Chaperone and Sequestration Protein through Its Unique C-Terminal Extension. Journal of Bacteriology, 2010, 192, 1231-1237.	1.0	63
51	Uptake, Localization, and Speciation of Cobalt in <i>Triticum aestivum</i> L. (Wheat) and <i>Lycopersicon esculentum</i> M. (Tomato). Environmental Science & Environmental Sc	4.6	32
52	In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicology Letters, 2010, 198, 324-330.	0.4	112
53	Enhanced Selenate Accumulation in <i>Cupriavidus metallidurans</i> CH34 Does Not Trigger a Detoxification Pathway. Applied and Environmental Microbiology, 2009, 75, 2250-2252.	1.4	5
54	The single-particle microbeam facility at CEA-Saclay. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1999-2002.	0.6	9

#	Article	IF	Citations
55	Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1247-1253.	0.4	28
56	Preparation of ¹⁴ C-Labeled Multiwalled Carbon Nanotubes for Biodistribution Investigations. Journal of the American Chemical Society, 2009, 131, 14658-14659.	6.6	47
57	Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment. Radiochimica Acta, 2009, 97, 375-383.	0.5	3
58	Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environmental Science & Environmental Science & 2009, 43, 8423-8429.	4.6	477
59	Impact of gold nanoparticles combined to X-Ray irradiation on bacteria. Gold Bulletin, 2008, 41, 187-194.	3.2	28
60	Transmission electron microscopic and X-ray absorption fine structure spectroscopic investigation of U repartition and speciation after accumulation in renal cells. Journal of Biological Inorganic Chemistry, 2008, 13, 655-662.	1.1	28
61	Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cells are highly dependent on metal speciation. Toxicology, 2008, 250, 62-69.	2.0	34
62	Cellular accumulation and distribution of uranium and lead in osteoblastic cells as a function of their speciation. Toxicology, 2008, 252, 26-32.	2.0	27
63	In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology, 2008, 253, 137-146.	2.0	284
64	Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Functional Plant Biology, 2008, 35, 193.	1.1	23
65	Uranium Induces Apoptosis and Is Genotoxic to Normal Rat Kidney (NRK-52E) Proximal Cells. Toxicological Sciences, 2007, 98, 479-487.	1.4	103
66	Toxicity of uranium and lead on osteoblastic bone cells. Toxicology Letters, 2007, 172, S50-S51.	0.4	0
67	Toxicity of uranium on renal cells. Toxicology Letters, 2007, 172, S57.	0.4	0
68	Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Molecular Microbiology, 2007, 63, 1054-1068.	1.2	161
69	Cell–metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 254-258.	0.6	12
70	Cyto and genotoxicity of natural uranium after acute or chronic exposures of normal rat kidney cells. Toxicology Letters, 2006, 164, S197.	0.4	0
71	Speciation governs chemical toxicity and cellular accumulation of lead on rat osteoblastic bone cells. Toxicology Letters, 2006, 164, S197-S198.	0.4	0
72	URANIUM (VI) toxicity after acute exposure of cultured renal cells: Citrate increases bioavailability and toxicity. Toxicology Letters, 2006, 164, S198-S199.	0.4	0

#	Article	IF	Citations
73	Toxicity of oxide nanoparticles and carbon nanotubes on cultured pneumocytes: Impact of size, structure and surface charge. Toxicology Letters, 2006, 164, S222.	0.4	2
74	Citrate Does Not Change Uranium Chemical Speciation in Cell Culture Medium but Increases Its Toxicity and Accumulation in NRK-52E Cells. Chemical Research in Toxicology, 2006, 19, 1637-1642.	1.7	36
75	Actinide speciation inÂrelation toÂbiological processes. Biochimie, 2006, 88, 1605-1618.	1.3	175
76	Development of a single ion hit facility at the Pierre Sýe Laboratory: a collimated microbeam to study radiological effects on targeted living cells. Radiation Protection Dosimetry, 2006, 122, 310-312.	0.4	4
77	Seleno-l-Methionine Is the Predominant Organic Form of Selenium in Cupriavidus metallidurans CH34 Exposed to Selenite or Selenate. Applied and Environmental Microbiology, 2006, 72, 6414-6416.	1.4	4
78	Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 268-273.	0.6	34
79	Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV. Radiochimica Acta, 2005, 93, 683-689.	0.5	17
80	Uranium(VI) complexation in cell culture medium: influence of speciation on Normal Rat Kidney (NRK-52E) cell accumulation. Radiochimica Acta, 2005, 93, 691-697.	0.5	16
81	Chemical Forms of Selenium in the Metal-Resistant Bacterium Ralstonia metallidurans CH34 Exposed to Selenite and Selenate. Applied and Environmental Microbiology, 2005, 71, 2331-2337.	1.4	96
82	Influence of Uranium Speciation on Normal Rat Kidney (NRK-52E) Proximal Cell Cytotoxicity. Chemical Research in Toxicology, 2004, 17, 446-452.	1.7	94
83	New Synthetic Glycolipids for Targeted Gene Transfer: Synthesis, Formulation in Lipoplexes and Specific Interaction with Lectin. Drug Delivery, 2004, 11, 351-363.	2.5	11
84	A New Triantennary Galactose-Targeted PEGylated Gene Carrier, Characterization of Its Complex with DNA, and Transfection of Hepatoma Cells. Bioconjugate Chemistry, 2004, 15, 754-764.	1.8	37
85	Investigation of cadmium toxicity on renal epithelial cells using nuclear microprobe analysis. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 359-363.	0.6	5
86	NLS bioconjugates for targeting therapeutic genes to the nucleus. Advanced Drug Delivery Reviews, 2003, 55, 295-306.	6.6	156
87	Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties. BMC Biotechnology, 2003, 3, 14.	1.7	19
88	OPTIMIZATION OF CATIONIC LIPID MEDIATED GENE TRANSFER: STRUCTURE-FUNCTION, PHYSICO-CHEMICAL, AND CELLULAR STUDIES. Journal of Liposome Research, 2002, 12, 95-106.	1.5	14
89	Immediate and Sustained Effects of Cobalt and Zinc-Containing Pigments on Macrophages. Frontiers in Immunology, $0,13,1$	2.2	5