Francis Alonzo Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1650865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Staphylococcus aureus</i> adapts to the host nutritional landscape to overcome tissue-specific branched-chain fatty acid requirement. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
2	Branched chain fatty acid synthesis drives tissue-specific innate immune response and infection dynamics of Staphylococcus aureus. PLoS Pathogens, 2021, 17, e1009930.	4.7	9
3	Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26482-26493.	7.1	57
4	Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum. MSphere, 2020, 5, .	2.9	19
5	Suppression of Staphylococcus aureus Superantigen-Independent Interferon Gamma Response by a Probiotic Polysaccharide. Infection and Immunity, 2020, 88, .	2.2	11
6	Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathogens, 2020, 16, e1008443.	4.7	11
7	Staphylococcus aureus Lipoic Acid Synthesis Limits Macrophage Reactive Oxygen and Nitrogen Species Production To Promote Survival during Infection. Infection and Immunity, 2019, 87, .	2.2	17
8	Identification of biologic agents to neutralize the bicomponent leukocidins of <i>Staphylococcus aureus</i> . Science Translational Medicine, 2019, 11, .	12.4	22
9	Dynamic Relay of Protein-Bound Lipoic Acid in Staphylococcus aureus. Journal of Bacteriology, 2019, 201, .	2.2	4
10	A Caspase-1 Biosensor to Monitor the Progression of Inflammation In Vivo. Journal of Immunology, 2019, 203, 2497-2507.	0.8	18
11	Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host and Microbe, 2019, 25, 463-470.e9.	11.0	26
12	Control of <i>Staphylococcus aureus</i> Quorum Sensing by a Membrane-Embedded Peptidase. Infection and Immunity, 2019, 87, .	2.2	22
13	Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proceedings of the United States of America, 2019, 116, 3764-3773.	7.1	65
14	Probiotic Exopolysaccharide Protects against Systemic <i>Staphylococcus aureus</i> Infection, Inducing Dual-Functioning Macrophages That Restrict Bacterial Growth and Limit Inflammation. Infection and Immunity, 2019, 87, .	2.2	25
15	Regulation of Th17 cells by P. UF1 against systemic Listeria monocytogenes infection. Gut Microbes, 2018, 9, 279-287.	9.8	13
16	Increased flexibility in the use of exogenous lipoic acid by <i>Staphylococcus aureus</i> . Molecular Microbiology, 2018, 109, 150-168.	2.5	15
17	A Lipoylated Metabolic Protein Released by Staphylococcus aureus Suppresses Macrophage Activation. Cell Host and Microbe, 2017, 22, 678-687.e9.	11.0	41
18	Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. Journal of Clinical Investigation, 2017, 127, 3970-3986.	8.2	67

Francis Alonzo III

#	Article	IF	CITATIONS
19	Staphylococcus aureus Tissue Infection During Sepsis Is Supported by Differential Use of Bacterial or Host-Derived Lipoic Acid. PLoS Pathogens, 2016, 12, e1005933.	4.7	35
20	Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5. MBio, 2016, 7, .	4.1	21
21	Exploiting dominantâ€negative toxins to combat <i>Staphylococcus aureus</i> pathogenesis. EMBO Reports, 2016, 17, 428-440.	4.5	49
22	The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin. Journal of Biological Chemistry, 2015, 290, 28402-28415.	3.4	11
23	Elimination of HIV-1-Infected Primary T Cell Reservoirs in an In Vitro Model of Latency. PLoS ONE, 2015, 10, e0126917.	2.5	5
24	Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles. PLoS Pathogens, 2015, 11, e1004707.	4.7	39
25	Autophagy Mediates Tolerance to Staphylococcus aureus Alpha-Toxin. Cell Host and Microbe, 2015, 17, 429-440.	11.0	127
26	CD4+ T Cells Promote the Pathogenesis of Staphylococcus aureus Pneumonia. Journal of Infectious Diseases, 2015, 211, 835-845.	4.0	50
27	Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition. Infection and Immunity, 2014, 82, 1268-1276.	2.2	56
28	The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5312-20.	7.1	110
29	Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature, 2014, 510, 152-156.	27.8	429
30	The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiology and Molecular Biology Reviews, 2014, 78, 199-230.	6.6	231
31	Evolution of hypervirulence by a <scp>MRSA</scp> clone through acquisition of a transposable element. Molecular Microbiology, 2014, 93, 664-681.	2.5	93
32	γδT Cells Exhibit Multifunctional and Protective Memory in Intestinal Tissues. Immunity, 2013, 39, 184-195.	14.3	193
33	CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature, 2013, 493, 51-55.	27.8	248
34	A Lesson in Survival: S.Âaureus versus the Skin. Cell Host and Microbe, 2013, 13, 3-5.	11.0	13
35	Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection. Cell Host and Microbe, 2013, 14, 453-459.	11.0	157
36	<i>Staphylococcus aureus</i> and CCR5: unveiling commonalities in host–pathogen interactions and potential treatment strategies. Future Microbiology, 2013, 8, 425-428.	2.0	5

Francis Alonzo III

#	Article	IF	CITATIONS
37	Bacterial Survival Amidst an Immune Onslaught: The Contribution of the Staphylococcus aureus Leukotoxins. PLoS Pathogens, 2013, 9, e1003143.	4.7	46
38	<i>Staphylococcus aureus</i> LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10794-10799.	7.1	180
39	Characterization of SSR42, a Novel Virulence Factor Regulatory RNA That Contributes to the Pathogenesis of a Staphylococcus aureus USA300 Representative. Journal of Bacteriology, 2012, 194, 2924-2938.	2.2	31
40	<i>Staphylococcus aureus</i> leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth <i>in vivo</i> . Molecular Microbiology, 2012, 83, 423-435.	2.5	134
41	Functional analysis of the <i>Listeria monocytogenes</i> secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. Molecular Microbiology, 2011, 80, 1530-1548.	2.5	43
42	Actin Polymerization Drives Septation of <i>Listeria monocytogenes namA</i> Hydrolase Mutants, Demonstrating Host Correction of a Bacterial Defect. Infection and Immunity, 2011, 79, 1458-1470.	2.2	21
43	<i>Listeria monocytogenes</i> PrsA2 Is Required for Virulence Factor Secretion and Bacterial Viability within the Host Cell Cytosol. Infection and Immunity, 2010, 78, 4944-4957.	2.2	54
44	Contribution of Chitinases to <i>Listeria monocytogenes</i> Pathogenesis. Applied and Environmental Microbiology, 2010, 76, 7302-7305.	3.1	74
45	The Posttranslocation Chaperone PrsA2 Contributes to Multiple Facets of <i>Listeria monocytogenes</i> Pathogenesis. Infection and Immunity, 2009, 77, 2612-2623.	2.2	57