
Andrea Stanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649646/publications.pdf Version: 2024-02-01

ΔΝΟΦΕΛ STANCO

#	Article	IF	CITATIONS
1	Deployment-Ready Quantum Key Distribution Over a Classical Network Infrastructure in Padua. Journal of Lightwave Technology, 2022, 40, 1658-1663.	4.6	7
2	Versatile and Concurrent FPGA-Based Architecture for Practical Quantum Communication Systems. IEEE Transactions on Quantum Engineering, 2022, 3, 1-8.	4.9	11
3	QKD field-trial in Padua: a resource-effective implementation with the iPOGNAC encoder. , 2022, , .		0
4	Time-bin Quantum Key Distribution exploiting the iPOGNAC polarization moulator and Qubit4Sync temporal synchronization. , 2022, , .		0
5	Resource-effective quantum key distribution: a field trial in Padua city center. Optics Letters, 2021, 46, 2848.	3.3	18
6	Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. Npj Quantum Information, 2021, 7, .	6.7	54
7	Certification of the efficient random number generation technique based on singleâ€photon detector arrays and timeâ€toâ€digital converters. IET Quantum Communication, 2021, 2, 74-79.	3.8	1
8	Semi-device independent randomness generation based on quantum state's indistinguishability. Quantum Science and Technology, 2021, 6, 045026.	5.8	15
9	A resource-effective QKD field-trial in Padua with the iPOGNAC encoder. , 2021, , .		О
10	Fast and Simple Qubit-Based Synchronization for Quantum Key Distribution. Physical Review Applied, 2020, 13, .	3.8	39
11	Efficient random number generation techniques for CMOS single-photon avalanche diode array exploiting fast time tagging units. Physical Review Research, 2020, 2, .	3.6	10
12	Stable, low-error, and calibration-free polarization encoder for free-space quantum communication. Optics Letters, 2020, 45, 4706.	3.3	24
13	Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder. Optica, 2020, 7, 284.	9.3	44
14	Quantum random number generation with efficient processing of single photon detections. , 2020, , .		0
15	Qubit4Sync: a qubit-based synchronization system for quantum key distribution. , 2020, , .		1
16	Simple and robust QKD system with Qubit4Sync temporal synchronization and the POGNAC polarization encoder. , 2020, , .		0
17	Silicon photonics-based experimental daylight free-space quantum key distribution at telecom wavelength (Conference Presentation). , 2020, , .		0

2

ANDREA STANCO

#	Article	IF	CITATIONS
19	QCoSOne: a chip-based prototype for daylight free-space QKD at telecom wavelength. , 2019, , .		2
20	All-fiber self-compensating polarization encoder for quantum key distribution. Optics Letters, 2019, 44, 2398.	3.3	42
21	POGNAC: an all-fiber self-compensating polarization modulator for QKD. , 2019, , .		0
22	Exploring the boundaries of quantum mechanics: advances in satellite quantum communications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170461.	3.4	19
23	Extending Wheeler's delayed-choice experiment to space. Science Advances, 2017, 3, e1701180.	10.3	38
24	Autonomous re-entry system technology demonstrator for sounding rockets: Development of an automated control system as recovery device for precise landing of sounding rockets. , 2016, , .		1