
Zhongliang Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Octane-Fueled Solid Oxide Fuel Cell. Science, 2005, 308, 844-847.	12.6	488
2	A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy and Environmental Science, 2011, 4, 3951.	30.8	121
3	Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers. Journal of Power Sources, 2006, 158, 1313-1316.	7.8	102
4	Sc-substituted La0.6Sr0.4FeO3â^îî´ mixed conducting oxides as promising electrodes for symmetrical solid oxide fuel cells. Journal of Power Sources, 2014, 246, 457-463.	7.8	89
5	Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3â^î^ electrodes. Journal of Power Sources, 2014, 252, 58-63.	7.8	61
6	Evaluation of LaSr2Fe2CrO9-δas a Potential Electrode for Symmetrical Solid Oxide Fuel Cells. Electrochimica Acta, 2014, 133, 453-458.	5.2	56
7	A solid oxide cell yielding high power density below 600 °C. RSC Advances, 2012, 2, 4075.	3.6	51
8	Co-generation of electricity and olefin via proton conducting fuel cells using (Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layers. Applied Catalysis B: Environmental, 2020, 272, 118973.	20.2	37
9	A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2, 462.	3.3	35
10	Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3-δ (SFMO) electrodes. International Journal of Hydrogen Energy, 2017, 42, 18499-18503.	7.1	34
11	Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-Metal batteries by tape-casting technique. Journal of Alloys and Compounds, 2019, 791, 923-928.	5.5	33
12	Metal-supported solid oxide fuel cells with impregnated SrFe 0.75 Mo 0.25 O 3 cathodes. Journal of Power Sources, 2014, 247, 556-561.	7.8	30
13	The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell. Journal of Power Sources, 2018, 374, 175-180.	7.8	29
14	Novel architectured metal-supported solid oxide fuel cells with Mo-doped SrFeO3â^'î´ electrocatalysts. Journal of Power Sources, 2014, 267, 148-154.	7.8	28
15	In situ formation of LaNi0.6Fe0.4O3â"δ–carbon nanotube hybrids as anodes for direct-methane solid oxide fuel cells. Journal of Power Sources, 2015, 299, 472-479.	7.8	28
16	Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells. Small, 2015, 11, 5581-5588.	10.0	27
17	Optimization of anode structure for intermediate temperature solid oxide fuel cell via phaseâ€inversion cotape casting. Journal of the American Ceramic Society, 2017, 100, 3794-3800.	3.8	25
18	Membrane-assisted propane partial oxidation for solid oxide fuel cell applications. Journal of Power Sources, 2018, 392, 200-205.	7.8	25

#	Article	IF	CITATIONS
19	Characterization of SrFe0.75Mo0.25O3â^lî–La0.9Sr0.1Ga0.8Mg0.2O3â^lî´ composite cathodes prepared by infiltration. Journal of Power Sources, 2014, 246, 906-911.	7.8	23
20	A Nanostructured Architecture for Reducedâ€Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2015, 5, 1500375.	19.5	20
21	High Activity of Nanoporousâ€Sm _{0.2} Ce _{0.8} O _{2â€<i>î´</i>} @430L Composites for Hydrogen Electroâ€Oxidation in Solid Oxide Fuel Cells. Advanced Energy Materials, 2014, 4, 1400883.	19.5	18
22	Electrochemical performance and redox stability of solid oxide fuel cells supported on dual-layered anodes of Ni-YSZ cermet and Ni–Fe alloy. International Journal of Hydrogen Energy, 2022, 47, 5453-5461.	7.1	16
23	Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method. International Journal of Hydrogen Energy, 2021, 46, 18511-18523.	7.1	14
24	Infiltrated Ni _{0.08} Co _{0.02} CeO _{2–<i>x</i>} @Ni _{0.8} Co _{0.2} Catalysts for a Finger-Like Anode in Direct Methane-Fueled Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 4943-4954.	8.0	13
25	Evaluation of GdSrCoO4+l̂´ intergrowth oxides as cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 133, 509-514.	5.2	12
26	Membrane-based catalytic partial oxidation of ethanol coupled with steam reforming for solid oxide fuel cells. Journal of Membrane Science, 2021, 622, 119032.	8.2	11
27	Syngas production through CH4-assisted co-electrolysis of H2O and CO2 in La0.8Sr0.2Cr0.5Fe0.5O3-1 ⁻ Zr0.84Y0.16O2-1 [^] electrode-supported solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 20305-20312.	7.1	11
28	Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes. Sensors, 2015, 15, 17558-17571.	3.8	10
29	Preparation and Properties of a Ni–Al2O3 Composite by a Sol–Gel Process. Journal of Materials Science Letters, 1999, 18, 707-710.	0.5	7
30	NO2 sensing properties of electrode-supported sensor by tape casting and co-firing method. lonics, 2015, 21, 2655-2662.	2.4	7
31	Dopant-induced surface activation of ceria nanorods for electro-oxidation of hydrogen and propane in solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 17922-17931.	7.1	6
32	Co-infiltrating Pr 0.6 Sr 0.4 FeO 3 -Ce 1-x Pr x O 2 (x=0.1, 0.3, 0.5, 0.7, 0.9) mixed oxides into the La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 skeleton for use as low temperature solid oxide fuel cell cathodes. Electrochimica Acta, 2014, 143, 168-174.	5.2	5
33	Hebb-Wagner polarization assessment of enhanced oxygen permeability for surface modified oxygen transport membranes. International Journal of Hydrogen Energy, 2017, 42, 18410-18416.	7.1	4
34	Direct CO ₂ Electrolysis on Symmetric La _{0.8} Sr _{0.2} Cr _{0.5} Fe _{0.5} O _{3â^î } -Zr _{0.84} Y _{0.16} O _{2â^îî} Electrode-Supported Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2021, 168, 024508.	2.9	4
35	Investigation of Ni2+-doped ceria nanorods as the anode catalysts for reduced-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47, 6827-6836.	7.1	3
36	A highly efficient and stable perovskite cathode with <i>in situ</i> exsolved NiFe alloy nanoparticles for CO ₂ electrolysis. Sustainable Energy and Fuels, 2022, 6, 2038-2044.	4.9	3

#	Article	IF	CITATIONS
37	Improvement of a GDC-based composite cathode for intermediate-temperature solid oxide fuel cells. Journal of Electroceramics, 2014, 32, 339-343.	2.0	1
38	Protonic ceramic cells with thin BaZr0.8Y0.2O3-δ electrolytes for stable separation of H2 from H2–CO2 mixtures. International Journal of Hydrogen Energy, 2022, 47, 12067-12073.	7.1	1