Liqiang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649412/publications.pdf Version: 2024-02-01

LIGIANG HUANG

#	Article	IF	CITATIONS
1	Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.	11.7	144
2	Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for Solid-State Li Metal Batteries. ACS Nano, 2019, 13, 14549-14556.	14.6	123
3	Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 1909-1916.	8.0	115
4	A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy and Environmental Science, 2022, 15, 1325-1333.	30.8	98
5	Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy and Environmental Science, 2021, 14, 4936-4947.	30.8	96
6	Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Letters, 2021, 6, 2054-2063.	17.4	79
7	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	14.6	77
8	Opportunities for High-Entropy Materials in Rechargeable Batteries. , 2021, 3, 160-170.		72
9	Triple Dipole Effect from Selfâ€Assembled Smallâ€Molecules for High Performance Organic Photovoltaics. Advanced Materials, 2016, 28, 4852-4860.	21.0	55
10	A writable lithium metal ink. Science China Chemistry, 2020, 63, 1483-1489.	8.2	45
11	Shaping the Contact between Li Metal Anode and Solidâ€ S tate Electrolytes. Advanced Functional Materials, 2020, 30, 1908701.	14.9	44
12	Fluorinated Reduced Graphene Oxide as an Efficient Hole-Transport Layer for Efficient and Stable Polymer Solar Cells. ACS Omega, 2017, 2, 2010-2016.	3.5	41
13	n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 13807-13816.	10.3	39
14	Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26213-26221.	8.0	38
15	Miscibility Matching and Bimolecular Crystallization Affording High-Performance Ternary Nonfullerene Solar Cells. Chemistry of Materials, 2019, 31, 10211-10224.	6.7	38
16	Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/Electrode Interfacial Chemistries. ACS Energy Letters, 2022, 7, 2032-2042.	17.4	37
17	A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Materials, 2022, 45, 934-940.	18.0	34
18	N-type Self-Doping of Fluorinate Conjugated Polyelectrolytes for Polymer Solar Cells: Modulation of Dipole, Morphology, and Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 1145-1153.	8.0	33

LIQIANG HUANG

#	Article	IF	CITATIONS
19	TiO ₂ Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28398-28404.	8.0	31
20	Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 14689-14696.	10.3	29
21	Ternary organic solar cells: compatibility controls for morphology evolution of active layers. Journal of Materials Chemistry C, 2017, 5, 10801-10812.	5.5	29
22	Roll-To-Roll Printing of Meter-Scale Composite Transparent Electrodes with Optimized Mechanical and Optical Properties for Photoelectronics. ACS Applied Materials & Interfaces, 2018, 10, 8917-8925.	8.0	26
23	Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Science China Chemistry, 2018, 61, 127-134.	8.2	25
24	Polyolefin Elastomer as the Anode Interfacial Layer for Improved Mechanical and Air Stabilities in Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10706-10716.	8.0	24
25	Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Advances, 2015, 5, 49182-49187.	3.6	23
26	Deciphering the Role of Fluoroethylene Carbonate towards Highly Reversible Sodium Metal Anodes. Research, 2022, 2022, 9754612.	5.7	23
27	Sulfonate Poly(aryl ether sulfone)-Modified PEDOT:PSS as Hole Transport Layer and Transparent Electrode for High Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 1943-1952.	3.1	21
28	High conductive PEDOT via post-treatment by halobenzoic for high-efficiency ITO-free and transporting layer-free organic solar cells. Organic Electronics, 2016, 33, 316-323.	2.6	17
29	High-Performance Polymer Solar Cells Realized by Regulating the Surface Properties of PEDOT:PSS Interlayer from Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 27018-27025.	8.0	16
30	Multi-Chlorine-Substituted Self-Assembled Molecules As Anode Interlayers: Tuning Surface Properties and Humidity Stability for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 9204-9212.	8.0	14
31	A Versatile Buffer Layer for Polymer Solar Cells: Rendering Surface Potential by Regulating Dipole. Advanced Functional Materials, 2015, 25, 3164-3171.	14.9	11
32	Ternary thick active layer for efficient organic solar cells. Journal of Materials Science, 2018, 53, 8398-8408.	3.7	6
33	Self-assembly monolayers manipulate the power conversion processes in organic photovoltaics. Journal of Power Sources, 2019, 409, 66-75.	7.8	6
34	Highly-efficient polymer solar cells realized by tailoring conjugated skeleton of alcohol-soluble conjugated electrolytes. Solar Energy Materials and Solar Cells, 2016, 157, 644-651.	6.2	3
35	Specific interaction between fluorine atoms and thiol groups accounting for higher domain purity and photostability in narrowband BHJ systems. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 941-951.	2.1	1