
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Molecular Cell, 2022, 82, 30-43.	9.7	138
2	Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. Nucleic Acids Research, 2022, 50, 4669-4684.	14.5	8
3	Fusion with heat-resistant obscure (Hero) proteins have the potential to improve the molecular property of recombinant proteins. PLoS ONE, 2022, 17, e0270097.	2.5	5
4	Revisiting the Glass Treatment for Single-Molecule Analysis of ncRNA Function. Methods in Molecular Biology, 2022, , 209-231.	0.9	1
5	Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature, 2022, 607, 393-398.	27.8	20
6	GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature, 2022, 608, 618-625.	27.8	24
7	Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms. EMBO Reports, 2021, 22, e51342.	4.5	12
8	Ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates the production of secondary siRNAs in plants. Cell Reports, 2021, 35, 109300.	6.4	30
9	Single-molecule analysis of processive double-stranded RNA cleavage by Drosophila Dicer-2. Nature Communications, 2021, 12, 4268.	12.8	15
10	Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
11	RNase κ promotes robust piRNA production by generating 2′,3′-cyclic phosphate-containing precursors. Nature Communications, 2021, 12, 4498.	12.8	6
12	Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5′ end of the siRNA guide strand. Rna, 2021, 27, 151-162.	3.5	6
13	siRNA potency enhancement via chemical modifications of nucleotide bases at the 5′-end of the siRNA guide strand. Rna, 2021, 27, 163-173.	3.5	8
14	Identification of an AGO (Argonaute) protein as a prey of TER94/VCP. Autophagy, 2020, 16, 190-192.	9.1	5
15	A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation. PLoS Biology, 2020, 18, e3000632.	5.6	51
16	Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature, 2020, 578, 311-316.	27.8	70
17	Title is missing!. , 2020, 18, e3000632.		0

0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 18, e3000632.		Ο
20	Title is missing!. , 2020, 18, e3000632.		0
21	Title is missing!. , 2020, 18, e3000632.		Ο
22	Title is missing!. , 2020, 18, e3000632.		0
23	VCP Machinery Mediates Autophagic Degradation of Empty Argonaute. Cell Reports, 2019, 28, 1144-1153.e4.	6.4	23
24	Iruka Eliminates Dysfunctional Argonaute by Selective Ubiquitination of Its Empty State. Molecular Cell, 2019, 73, 119-129.e5.	9.7	35
25	<scp>PNLDC</scp> 1, mouse preâ€pi <scp>RNA</scp> Trimmer, is required for meiotic and postâ€meiotic male germ cell development. EMBO Reports, 2018, 19, .	4.5	64
26	Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Research, 2018, 25, 277-286.	3.4	26
27	Reconstitution of RNA Interference Machinery. Methods in Molecular Biology, 2018, 1680, 131-143.	0.9	4
28	In vitro reconstitution of chaperone-mediated human RISC assembly. Rna, 2018, 24, 6-11.	3.5	25
29	Single-Molecule Analysis for RISC Assembly and Target Cleavage. Methods in Molecular Biology, 2018, 1680, 145-164.	0.9	7
30	Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems. Molecular Cell, 2018, 70, 722-729.e4.	9.7	56
31	In vitro RNA-dependent RNA Polymerase Assay Using Arabidopsis RDR6. Bio-protocol, 2018, 8, e2673.	0.4	ο
32	ATP is dispensable for both miRNA- and Smaug-mediated deadenylation reactions. Rna, 2017, 23, 866-871.	3.5	5
33	Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal <scp>mRNA</scp> clearance in zebrafish. Genes To Cells, 2017, 22, 670-678.	1.2	10
34	In Vitro Analysis of ARGONAUTE-Mediated Target Cleavage and Translational Repression in Plants. Methods in Molecular Biology, 2017, 1640, 55-71.	0.9	10
35	The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 2017, 3, 17036.	9.3	66
36	Silencing messages in a unique way. Nature Plants, 2017, 3, 769-770.	9.3	3

#	Article	IF	CITATIONS
37	Structural basis for arginine methylation-independent recognition of PIWIL1 by TDRD2. Proceedings of the United States of America, 2017, 114, 12483-12488.	7.1	27
38	Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A. Nucleic Acids Research, 2017, 45, 10837-10844.	14.5	9
39	CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence. Rna, 2016, 22, 1550-1559.	3.5	18
40	Codon Usage and 3′ UTR Length Determine Maternal mRNA Stability in Zebrafish. Molecular Cell, 2016, 61, 874-885.	9.7	229
41	Identification and Functional Analysis of the Pre-piRNA 3′ Trimmer in Silkworms. Cell, 2016, 164, 962-973.	28.9	159
42	RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 71-81.	1.9	247
43	microRNA-Mediated Translational Repression in Plants and Animals. Kagaku To Seibutsu, 2015, 53, 510-514.	0.0	0
44	My encounter with RNA. Rna, 2015, 21, 747-748.	3.5	0
45	Single-Molecule Analysis of the Target Cleavage Reaction by the Drosophila RNAi Enzyme Complex. Molecular Cell, 2015, 59, 125-132.	9.7	48
46	Cryptic RNA-binding by PRC2 components EZH2 and SUZ12. RNA Biology, 2015, 12, 959-965.	3.1	20
47	Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature, 2015, 521, 533-536.	27.8	115
48	The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology, 2015, 25, 651-665.	7.9	648
49	The Initial Uridine of Primary piRNAs Does Not Create the Tenth Adenine that Is the Hallmark of Secondary piRNAs. Molecular Cell, 2014, 56, 708-716.	9.7	102
50	Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors. Genes and Development, 2014, 28, 665-671.	5.9	10
51	Elements and machinery of nonâ€coding <scp>RNA</scp> s: toward their taxonomy. EMBO Reports, 2014, 15, 489-507.	4.5	84
52	Making piRNAs In Vitro. Methods in Molecular Biology, 2014, 1093, 35-46.	0.9	5
53	MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila. Molecular Cell, 2014, 56, 67-78.	9.7	100
54	Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 2013, 52, 591-601.	9.7	229

#	Article	IF	CITATIONS
55	Poly(A)-Specific Ribonuclease Mediates 3′-End Trimming of Argonaute2-Cleaved Precursor MicroRNAs. Cell Reports, 2013, 5, 715-726.	6.4	131
56	<i>Arabidopsis</i> ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Reports, 2013, 14, 652-658.	4.5	71
57	Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins. Rna, 2013, 19, 896-901.	3.5	46
58	The comprehensive epigenome map of piRNA clusters. Nucleic Acids Research, 2013, 41, 1581-1590.	14.5	29
59	Dicer is dispensable for asymmetric RISC loading in mammals. Rna, 2012, 18, 24-30.	3.5	66
60	The true core of RNA silencing revealed. Nature Structural and Molecular Biology, 2012, 19, 657-660.	8.2	33
61	MicroRNAs Mediate Gene Silencing via Multiple Different Pathways in Drosophila. Molecular Cell, 2012, 48, 825-836.	9.7	102
62	The N domain of Argonaute drives duplex unwinding during RISC assembly. Nature Structural and Molecular Biology, 2012, 19, 145-151.	8.2	262
63	A role for transcription from a piRNA cluster in de novo piRNA production. Rna, 2012, 18, 265-273.	3.5	50
64	miRNA-like duplexes as RNAi triggers with improved specificity. Frontiers in Genetics, 2012, 3, 127.	2.3	22
65	Poly(A)-Binding Protein Facilitates Translation of an Uncapped/Nonpolyadenylated Viral RNA by Binding to the 3′ Untranslated Region. Journal of Virology, 2012, 86, 7836-7849.	3.4	41
66	Recognition of the pre-miRNA structure by DrosophilaÂDicer-1. Nature Structural and Molecular Biology, 2011, 18, 1153-1158.	8.2	153
67	3′ End Formation of PIWI-Interacting RNAs InÂVitro. Molecular Cell, 2011, 43, 1015-1022.	9.7	222
68	PABP is not essential for microRNA-mediated translational repression and deadenylation <i>in vitro</i> . EMBO Journal, 2011, 30, 4998-5009.	7.8	58
69	Multilayer checkpoints for microRNA authenticity during RISC assembly. EMBO Reports, 2011, 12, 944-949.	4.5	47
70	The silkworm W chromosome is a source of female-enriched piRNAs. Rna, 2011, 17, 2144-2151.	3.5	50
71	Zygotic amplification of secondary piRNAs during silkworm embryogenesis. Rna, 2011, 17, 1401-1407.	3.5	65
72	Native Gel Analysis for RISC Assembly. Methods in Molecular Biology, 2011, 725, 91-105.	0.9	13

#	Article	IF	CITATIONS
73	Making RISC. Trends in Biochemical Sciences, 2010, 35, 368-376.	7.5	454
74	The microRNA pathway and cancer. Cancer Science, 2010, 101, 2309-2315.	3.9	208
75	ATP-dependent human RISC assembly pathways. Nature Structural and Molecular Biology, 2010, 17, 17-23.	8.2	304
76	Hsc70/Hsp90 Chaperone Machinery Mediates ATP-Dependent RISC Loading of Small RNA Duplexes. Molecular Cell, 2010, 39, 292-299.	9.7	404
77	Diazirine-containing RNA photocrosslinking probes for the study of siRNA–protein interactions. Chemical Communications, 2010, 46, 7367.	4.1	18
78	Argonaute-mediated translational repression (and activation). Fly, 2009, 3, 205-208.	1.7	48
79	The <i>Bombyx</i> ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. Rna, 2009, 15, 1258-1264.	3.5	124
80	Biochemical dissection of RISC assembly and function. Nucleic Acids Symposium Series, 2009, 53, 15-15.	0.3	2
81	Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nature Structural and Molecular Biology, 2009, 16, 953-960.	8.2	241
82	Drosophila Argonaute1 and Argonaute2 Employ Distinct Mechanisms for Translational Repression. Molecular Cell, 2009, 34, 58-67.	9.7	158
83	piRNAs—the ancient hunters of genome invaders: Figure 1 Genes and Development, 2007, 21, 1707-1713.	5.9	105
84	Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1. Cell, 2007, 130, 287-297.	28.9	378
85	Sorting of Drosophila Small Silencing RNAs. Cell, 2007, 130, 299-308.	28.9	348
86	MicroRNA Biogenesis: Drosha Can't Cut It without a Partner. Current Biology, 2005, 15, R61-R64.	3.9	126
87	Perspective: machines for RNAi. Genes and Development, 2005, 19, 517-529.	5.9	782
88	Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes. Cell, 2005, 123, 607-620.	28.9	991
89	Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein. PLoS Biology, 2005, 3, e236.	5.6	457
90	The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease. Current Biology, 2004, 14, 787-791.	3.9	349

#	Article	IF	CITATIONS
91	A Protein Sensor for siRNA Asymmetry. Science, 2004, 306, 1377-1380.	12.6	526
92	RISC Assembly Defects in the Drosophila RNAi Mutant armitage. Cell, 2004, 116, 831-841.	28.9	339
93	Decreased CCA-addition in Human Mitochondrial tRNAs Bearing a Pathogenic A4317G or A10044G Mutation. Journal of Biological Chemistry, 2003, 278, 16828-16833.	3.4	32
94	tRNA Recognition by CCA-adding enzyme. Nucleic Acids Symposium Series, 2002, 2, 77-78.	0.3	8
95	Cell-free translation reconstituted with purified components. Nature Biotechnology, 2001, 19, 751-755.	17.5	1,647
96	Identification and Characterization of Mammalian Mitochondrial tRNA nucleotidyltransferases. Journal of Biological Chemistry, 2001, 276, 40041-40049.	3.4	100
97	The role of tightly bound ATP in Escherichia coli tRNA nucleotidyltransferase. Genes To Cells, 2000, 5, 689-698.	1.2	22