Dongyuan Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1648604/dongyuan-zhao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85,416 706 150 270 h-index g-index citations papers 8.25 92,746 746 11.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
706	Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6024-6036	16.4	5794
705	Carbon materials for chemical capacitive energy storage. <i>Advanced Materials</i> , 2011 , 23, 4828-50	24	2273
704	Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. <i>Nature</i> , 1998 , 396, 152-155	50.4	2217
703	On the controllable soft-templating approach to mesoporous silicates. <i>Chemical Reviews</i> , 2007 , 107, 2821-60	68.1	2000
702	Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. <i>Journal of the American Chemical Society</i> , 2008 , 130, 28-9	16.4	1459
701	Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7053-9	16.4	1130
700	Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. <i>Chemistry of Materials</i> , 1999 , 11, 2813-2826	9.6	1011
699	Morphological Control of Highly Ordered Mesoporous Silica SBA-15. <i>Chemistry of Materials</i> , 2000 , 12, 275-279	9.6	979
698	A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic Drganic Self-Assembly. <i>Chemistry of Materials</i> , 2006 , 18, 4447-4464	9.6	931
697	Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8466-73	16.4	827
696	Mesoporous materials for energy conversion and storage devices. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	788
695	A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. <i>Advanced Functional Materials</i> , 2013 , 23, 2322-2328	15.6	783
694	Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9280-3	16.4	736
693	Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. <i>Journal of the American Chemical Society</i> , 1999 , 121, 254-255	16.4	712
692	Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5875-9	16.4	703
691	Extension of the StBer method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5947-51	16.4	623
690	Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. <i>Advanced Materials</i> , 2012 , 24, 745-8	24	618

689	General Oriented Formation of Carbon Nanotubes from Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8212-8221	16.4	598
688	A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13508-9	16.4	558
687	A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7987-9	7 ^{6.4}	543
686	Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11652-62	16.4	539
685	Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5980-4	16.4	535
684	Ordered mesoporous materials as adsorbents. <i>Chemical Communications</i> , 2011 , 47, 3332-8	5.8	515
683	Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1524-30	16.4	514
682	Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. <i>Nano Letters</i> , 2014 , 14, 923-32	11.5	503
681	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. <i>Nature Communications</i> , 2013 , 4,	17.4	475
680	Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13161-6	16.4	459
679	Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. <i>Chemistry of Materials</i> , 2009 , 21, 706-716	9.6	457
678	Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3146-50	16.4	446
677	Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. <i>Chemical Society Reviews</i> , 2015 , 44, 1346-78	58.5	438
676	Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2850-1	16.4	435
675	Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. <i>Advanced Materials</i> , 2013 , 25, 6569-74	24	429
674	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. <i>Advanced Materials</i> , 2017 , 29, 1602914	24	424
673	Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. <i>Nature Materials</i> , 2003 , 2, 159-63	27	418
672	Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff Be Boer Method. <i>Langmuir</i> , 1999 , 15, 5403-5409	4	406

671	Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2508-2515	16.4	397
670	Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons <i>Chemistry of Materials</i> , 2008 , 20, 932-945	9.6	389
669	Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8151-5	16.4	378
668	Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. <i>Langmuir</i> , 2000 , 16, 8291-8295	4	374
667	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. <i>Nano Today</i> , 2017 , 15, 26-55	17.9	367
666	A Perspective on Mesoporous TiO2 Materials. <i>Chemistry of Materials</i> , 2014 , 26, 287-298	9.6	366
665	A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11864-7	16.4	357
664	Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. <i>Chemistry of Materials</i> , 1999 , 11, 1621-1627	9.6	356
663	Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1690-7	16.4	354
662	Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. <i>Nano Letters</i> , 2012 , 12, 1503-8	11.5	349
661	Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1258-1262	16.4	344
660	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. <i>Chemical Society Reviews</i> , 2013 , 42, 4054-70	58.5	341
659	Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy. <i>Nano Letters</i> , 2012 , 12, 61-7	11.5	340
658	A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2011 , 1, 382-386	21.8	327
657	"Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. <i>Accounts of Chemical Research</i> , 2006 , 39, 423-32	24.3	327
656	Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. <i>Advanced Materials</i> , 2013 , 25, 2095-100	24	325
655	Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. <i>Journal of the American Chemical Society</i> , 2001 , 123, 5014-2	246.4	325
654	Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7976-9	16.4	323

(2012-2015)

653	Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nature Communications, 2015 , 6, 8689	17.4	322
652	High-performance ionic diode membrane for salinity gradient power generation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12265-72	16.4	322
651	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. <i>Nature Communications</i> , 2015 , 6, 7402	17.4	320
650	Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4541	- 5 6·4	319
649	Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7060-4	16.4	318
648	Functional nanoporous graphene foams with controlled pore sizes. <i>Advanced Materials</i> , 2012 , 24, 4419-	-234	316
647	Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. <i>Nano Research</i> , 2010 , 3, 632-642	10	315
646	Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18300-3	16.4	313
645	LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 239-41	16.4	309
644	Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. <i>Carbon</i> , 2007 , 45, 1757-1763	10.4	302
643	A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 93-99		299
642	Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15086-92	16.4	298
641	Ordered mesoporous non-oxide materials. <i>Chemical Society Reviews</i> , 2011 , 40, 3854-78	58.5	296
640	Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. <i>Journal of the American Chemical Society</i> , 2002 , 124, 4556-7	16.4	296
639	Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15. <i>Chemistry of Materials</i> , 1999 , 11, 3680-3686	9.6	292
638	Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7235	13	290
637	The in-vitro bioactivity of mesoporous bioactive glasses. <i>Biomaterials</i> , 2006 , 27, 3396-403	15.6	290
636	General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. <i>Advanced Materials</i> , 2012 , 24, 485-91	24	283

635	Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. <i>Journal of the American Chemical Society</i> , 2004 , 126, 865-75	16.4	283
634	Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. <i>Chemical Communications</i> , 2007 , 897-926	5.8	279
633	Morphology Development of Mesoporous Materials: a Colloidal Phase Separation Mechanism. <i>Chemistry of Materials</i> , 2004 , 16, 889-898	9.6	279
632	One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. <i>Nano Letters</i> , 2002 , 2, 725-725	3 ^{11.5}	278
631	Spatially Confined Fabrication of CoreBhell Gold [email[protected] Silica for Near-Infrared Controlled Photothermal Drug Release. <i>Chemistry of Materials</i> , 2013 , 25, 3030-3037	9.6	276
630	Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. <i>Carbon</i> , 2011 , 49, 1248-1257	10.4	274
629	Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. <i>Analytical Chemistry</i> , 2009 , 81, 503-8	7.8	270
628	Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15830-3	16.4	268
627	Amorphous TiO Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. <i>Advanced Materials</i> , 2017 , 29, 1700523	24	265
626	Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. <i>Nano Letters</i> , 2012 , 12, 2852-8	11.5	265
625	Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. <i>Angewandte Chemie</i> , 2005 , 117, 7215-7221	3.6	262
624	Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. <i>Advanced Materials</i> , 2009 , 21, 1377-1382	24	259
623	Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. <i>Chemistry of Materials</i> , 1998 , 10, 2033-2036	9.6	251
622	Highly Ordered Mesoporous Crystalline MoSe2 Material with Efficient Visible-Light-Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. <i>Advanced Functional Materials</i> , 2013 , 23, 1832-1838	15.6	249
621	General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. <i>Nano Letters</i> , 2015 , 15, 2186-93	11.5	248
620	Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals. <i>Journal of the American Chemical Society</i> , 2000 , 122, 3530-3531	16.4	247
619	Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 8723-32	3.4	244
618	Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. <i>Nature Communications</i> , 2015 , 6, 6938	17.4	241

(2007-2007)

617	Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. <i>Electrochemistry Communications</i> , 2007 , 9, 569-573	5.1	241
616	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. <i>Chemistry of Materials</i> , 2013 , 25, 106-112	9.6	240
615	Extension of the StBer method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. <i>Advanced Materials</i> , 2013 , 25, 142-9	24	237
614	Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15148-56	16.4	235
613	Highly ordered large caged cubic mesoporous silica structures templated by triblock PEOBBOBEO copolymer. <i>Chemical Communications</i> , 2000 , 575-576	5.8	235
612	Highly reversible and large lithium storage in mesoporous si/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. <i>Advanced Materials</i> , 2014 , 26, 6749-55	24	234
611	Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598	50.4	233
610	Highly ordered mesoporous silica films with perpendicular mesochannels by a simple StBer-solution growth approach. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2173-7	16.4	233
609	Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. Journal of the American Chemical Society, 2005 , 127, 10794-5	16.4	232
608	Mesoporous titania: From synthesis to application. <i>Nano Today</i> , 2012 , 7, 344-366	17.9	230
607	Ordered mesoporous materials based on interfacial assembly and engineering. <i>Advanced Materials</i> , 2013 , 25, 5129-52, 5128	24	226
606	An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. <i>Chemistry of Materials</i> , 2006 , 18, 5279-5288	9.6	226
605	Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16576-1	657 9	225
604	An overview of the synthesis of ordered mesoporous materials. <i>Chemical Communications</i> , 2013 , 49, 943-6	5.8	221
603	Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7073-7080	16.4	220
602	Synthesis of 2D-Mesoporous-Carbon/MoS Heterostructures with Well-Defined Interfaces for High-Performance Lithium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 9385-9390	24	218
601	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1706-1713	16.4	216
600	Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. <i>Journal of the American Chemical Society</i> , 2007 , 129, 138	394: 4 0	4 ²¹⁶

599	Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9035-40	16.4	215
598	An Interface Coassembly in Biliquid Phase: Toward Core-Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13282-9	16.4	208
597	Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. <i>Microporous and Mesoporous Materials</i> , 2004 , 73, 121-128	5.3	203
596	A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17653-60	16.4	202
595	Doped Mesoporous Silica Fibers: A New Laser Material. <i>Advanced Materials</i> , 1999 , 11, 632-636	24	201
594	An Interface-Induced Co-Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for High-Performance Supercapacitors. <i>Advanced Functional Materials</i> , 2015 , 25, 526-533	15.6	198
593	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. <i>Nano Energy</i> , 2015 , 18, 133-142	17.1	197
592	Emerging trends in porous materials for CO capture and conversion. <i>Chemical Society Reviews</i> , 2020 , 49, 4360-4404	58.5	196
591	Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. <i>Chemical Communications</i> , 2014 , 50, 329-31	5.8	196
590	A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7935-44	16.4	195
589	One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4724-5	16.4	195
588	Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2236-45	16.4	193
587	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. <i>Chemistry of Materials</i> , 2007 , 19, 3271-3277	9.6	193
586	Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. <i>Carbon</i> , 2015 , 84, 335-346	10.4	192
585	Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700283	21.8	187
5 ⁸ 4	Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2464-9	16.4	186
583	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. <i>Chemistry of Materials</i> , 2011 , 23, 2176-2184	9.6	186
582	New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. <i>Chemical Society Reviews</i> , 2015 , 44, 7997-8018	58.5	183

581	On the origin of helical mesostructures. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10460-6	16.4	182
580	Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. <i>Langmuir</i> , 2010 , 26, 10277-86	4	181
579	Core-shell structured titanium dioxide nanomaterials for solar energy utilization. <i>Chemical Society Reviews</i> , 2018 , 47, 8203-8237	58.5	180
578	Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. <i>Chemistry - A European Journal</i> , 2009 , 15, 11010-9	4.8	175
577	Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7495	5 -75 02	173
576	Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. <i>Scientific Reports</i> , 2013 , 3, 3536	4.9	171
575	Uniform Ordered Two-Dimensional Mesoporous TiO Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4135-414	1 3 6.4	170
574	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. <i>Chemical Communications</i> , 2008 , 2641-3	5.8	167
573	A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17320-17328	3.4	166
572	Hydrothermal Synthesis and Structural Characterization of Zeolite-like Structures Based on Gallium and Aluminum Germanates. <i>Journal of the American Chemical Society</i> , 1998 , 120, 13389-13397	16.4	166
571	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6706		163
570	Controlled Synthesis of Ordered Mesoporous CIIiO2 Nanocomposites with Crystalline Titania Frameworks from OrganicIhorganicImphiphilic Coassembly Chemistry of Materials, 2008, 20, 1140-114	₽.6	163
569	Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. <i>Nano Today</i> , 2013 , 8, 643-676	17.9	162
568	Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12113-4	16.4	160
567	Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study. <i>Advanced Functional Materials</i> , 2018 , 28, 1705268	15.6	160
566	Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. <i>Advanced Materials</i> , 2014 , 26, 3741-7	24	158
565	Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10801		158
564	Facile Synthesis of Hierarchically Ordered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as a Catalyst Support. <i>Chemistry of Materials</i> , 2010 , 22, 3433-344	09.6	157

563	NIR-triggered release of caged nitric oxide using upconverting nanostructured materials. <i>Small</i> , 2012 , 8, 3800-5	11	154
562	Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. <i>Advanced Materials</i> , 2011 , 23, 3775-9	24	154
561	Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5366-70	16.4	153
560	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. <i>Chemical Communications</i> , 2011 , 47, 11618-20	5.8	153
559	Rapid separation and purification of nanoparticles in organic density gradients. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2333-7	16.4	153
558	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8459-8463	16.4	152
557	Container effect in nanocasting synthesis of mesoporous metal oxides. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14542-5	16.4	150
556	Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. <i>Nanoscale</i> , 2014 , 6, 3217-22	7.7	149
555	Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. <i>Nano Letters</i> , 2014 , 14, 3634-9	11.5	148
554	Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas. <i>Advanced Energy Materials</i> , 2011 , 1, 115-123	21.8	147
553	Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase. <i>Nano Letters</i> , 2001 , 1, 743-748	11.5	147
552	Plasmolysis-Inspired Nanoengineering of Functional Yolk-Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15486-15493	16.4	146
551	Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 875		146
550	Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11379		143
549	Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. Journal of the American Chemical Society, 2015 , 137, 5903-6	16.4	142
548	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10365-10373	16.4	142
547	Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. <i>Nano Research</i> , 2010 , 3, 481-489	10	141
546	Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3118-3123	3.4	141

(2009-2013)

545	One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. <i>Nano Research</i> , 2013 , 6, 871-879	10	140
544	Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization. <i>ACS Central Science</i> , 2017 , 3, 839-846	16.8	140
543	A Fast Way for Preparing Crack-Free Mesostructured Silica Monolith. <i>Chemistry of Materials</i> , 2003 , 15, 536-541	9.6	139
542	Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20369-77	16.4	138
541	Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2BiO2 nanocomposites generating excellent degradation activity of RhB dye. <i>Applied Catalysis B: Environmental</i> , 2010 , 95, 197-207	21.8	137
540	Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. <i>Chemical Communications</i> , 2002 , 1824-5	5.8	137
539	Monodisperse and homogeneous SiO /C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. <i>Energy Storage Materials</i> , 2018 , 13, 112-118	19.4	136
538	A graphene-directed assembly route to hierarchically porous CoNx/C catalysts for high-performance oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16867-16873	13	135
537	Synthesis of highly ordered mesoporous crystalline WS(2) and MoS(2) via a high-temperature reductive sulfuration route. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9522-31	16.4	134
536	Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. <i>Carbon</i> , 2011 , 49, 545-555	10.4	133
535	Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. <i>ACS Nano</i> , 2009 , 3, 159-64	16.7	132
534	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted StBer Method. <i>Chemistry of Materials</i> , 2016 , 28, 2356-2362	9.6	131
533	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424	16.7	131
532	LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2012 , 124, 243-245	3.6	129
531	Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12042-50	16.4	129
530	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. <i>Nature Chemistry</i> , 2016 , 8, 171-8	17.6	128
529	One-pot synthesis of magnetically separable ordered mesoporous carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3292		128
528	Formation of Hollow Upconversion Rare-Earth Fluoride Nanospheres: Nanoscale Kirkendall Effect During Ion Exchange. <i>Chemistry of Materials</i> , 2009 , 21, 5237-5243	9.6	128

527	Porous platinum nanowire arrays for direct ethanol fuel cell applications. <i>Chemical Communications</i> , 2009 , 195-7	5.8	127
526	Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. Journal of Materials Chemistry, 2005 , 15, 2414		127
525	Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface. <i>Nano Letters</i> , 2014 , 14, 2702-8	11.5	123
524	Ligand-Assisted Assembly Approach to Synthesize Large-Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. <i>Advanced Energy Materials</i> , 2011 , 1, 241-248	21.8	123
523	Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1511		123
522	Photooxidation of olefins under oxygen in platinum(II) complex-loaded mesoporous molecular sieves. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14685-90	16.4	121
521	Single-micelle-directed synthesis of mesoporous materials. <i>Nature Reviews Materials</i> , 2019 , 4, 775-791	73.3	118
520	Magnetic yolkEhell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4586-4594	13	118
519	Controllable Assembly of Ordered Semiconductor Ag2S Nanostructures. <i>Nano Letters</i> , 2003 , 3, 85-88	11.5	118
518	Controlled Synthesis and Functionalization of Ordered Large-Pore Mesoporous Carbons. <i>Advanced Functional Materials</i> , 2010 , 20, 3658-3665	15.6	117
517	A Micelle Fusion-Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12586-95	16.4	116
516	Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. <i>Chemical Communications</i> , 2001 , 2726-2727	5.8	116
515	Molecularly ordered inorganic frameworks in layered silicate surfactant mesophases. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4519-29	16.4	115
514	Nanoengineering of Core-Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4954-4961	16.4	113
513	Hierarchical bicontinuous porosity in metalBrganic frameworks templated from functional block co-oligomer micelles. <i>Chemical Science</i> , 2013 , 4, 3573	9.4	113
512	Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. <i>Nature Communications</i> , 2020 , 11, 3102	17.4	112
511	Formation of mesoporous carbon with a face-centered-cubic Fd3\$m structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1089-93	16.4	112
510	Three-dimensional pillar-layered copper(II) metal-organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. <i>Inorganic Chemistry</i> , 2011 , 50, 3442-6	5.1	111

(2016-2008)

509	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. <i>Chemistry of Materials</i> , 2008 , 20, 7281-7286	9.6	108
508	Evaporation-Induced Coating and Self-Assembly of Ordered Mesoporous Carbon-Silica Composite Monoliths with Macroporous Architecture on Polyurethane Foams. <i>Advanced Functional Materials</i> , 2008 , 18, 3914-3921	15.6	108
507	Controllable Fabrication of Two-Dimensional Patterned VO Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. <i>ACS Nano</i> , 2017 , 11, 7542-7551	16.7	107
506	Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1385-1393	16.4	107
505	Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2540-2546	9.6	107
504	Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. <i>Science Advances</i> , 2015 , 1, e1500166	14.3	106
503	Synthesis of large-pore Ia3d mesoporous silica and its tubelike carbon replica. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3930-4	16.4	106
502	Recent advances in the synthesis of non-siliceous mesoporous materials. <i>Current Opinion in Solid State and Materials Science</i> , 2003 , 7, 191-197	12	106
501	Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications. <i>Advanced Materials</i> , 2019 , 31, e1707612	24	106
500	An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites. <i>Advanced Materials</i> , 2010 , 22, 833-7	24	103
499	Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 110-128	4.2	101
498	Mesoporous carbon single-crystals from organic-organic self-assembly. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7746-7	16.4	101
497	Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon. <i>Chemistry of Materials</i> , 2008 , 20, 1012-1018	9.6	100
496	Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation. <i>Langmuir</i> , 2010 , 26, 8850-6	4	99
495	Cuprite Nanowires by Electrodeposition from Lyotropic Reverse Hexagonal Liquid Crystalline Phase. <i>Chemistry of Materials</i> , 2002 , 14, 876-880	9.6	99
494	A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO Hollow Microspheres Wrapped with Graphene Nanosheets. <i>Small</i> , 2016 , 12, 6207-6213	11	99
493	Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2808-11	16.4	98
492	The dual roles of functional groups in the photoluminescence of graphene quantum dots. <i>Nanoscale</i> , 2016 , 8, 7449-58	7.7	97

491	One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. <i>Chemical Communications</i> , 2007 , 2867-9	5.8	97
490	Direct Superassemblies of Freestanding Metal-Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16533-16541	16.4	97
489	2013,		97
488	Hydrophobic mesoporous materials for immobilization of enzymes. <i>Microporous and Mesoporous Materials</i> , 2009 , 124, 76-83	5.3	96
487	Synthesis of Self-Supported Ordered Mesoporous Cobalt and Chromium Nitrides. <i>Advanced Functional Materials</i> , 2008 , 18, 2436-2443	15.6	96
486	Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts. <i>Nanoscale</i> , 2015 , 7, 6247-54	7.7	93
485	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. <i>Chemistry of Materials</i> , 2009 , 21, 3996-4005	9.6	93
484	Pore structures of ordered large cage-type mesoporous silica FDU-12s. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21467-72	3.4	93
483	Novel Black BiVO4/TiO2N Photoanode with Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting. <i>Advanced Energy Materials</i> , 2019 , 9, 1901287	21.8	92
482	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. <i>ACS Applied Materials & Amp;</i> Interfaces, 2015 , 7, 17450-9	9.5	92
481	Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6149-53	16.4	92
480	A Microporous Metal®rganic Framework with Immobilized ®H Functional Groups within the Pore Surfaces for Selective Gas Sorption. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 3745-3749	2.3	92
479	Yolk@Shell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. <i>Energy Storage Materials</i> , 2019 , 19, 299-305	19.4	92
478	A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core-shell nanostructures. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 6085	- 7 993	91
477	Extension of The StBer Method to the Preparation of Monodisperse Resorcinol Bormaldehyde Resin Polymer and Carbon Spheres. <i>Angewandte Chemie</i> , 2011 , 123, 6069-6073	3.6	91
476	Reversible Two-Dimensional Three Dimensional Framework Transformation within a Prototype Metal Organic Framework. <i>Crystal Growth and Design</i> , 2009 , 9, 5293-5296	3.5	91
475	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. <i>Nano Energy</i> , 2016 , 25, 80-90	17.1	90
474	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium D2 batteries and oil adsorption applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7973-7979	13	89

473	Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. <i>Microporous and Mesoporous Materials</i> , 2011 , 143, 406-412	5.3	89
472	Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEOBMMA diblock copolymer. <i>Journal of Materials Chemistry</i> , 2008 , 18, 91-97		89
471	Rare-earth upconverting nanobarcodes for multiplexed biological detection. <i>Small</i> , 2011 , 7, 1972-6	11	87
470	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. <i>Matter</i> , 2020 , 3, 2124-2137	12.7	86
469	Near-Infrared Triggered Decomposition of Nanocapsules with High Tumor Accumulation and Stimuli Responsive Fast Elimination. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2611-2615	16.4	85
468	Rapid and efficient removal of microcystins by ordered mesoporous silica. <i>Environmental Science</i> & amp; Technology, 2013 , 47, 8633-41	10.3	85
467	Challenges in fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers. <i>ACS Nano</i> , 2010 , 4, 189-98	16.7	85
466	Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. <i>Nanoscale</i> , 2014 , 6, 14657-61	7.7	84
465	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. <i>Chemical Science</i> , 2014 , 5, 1565	9.4	83
464	Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. <i>Energy and Environmental Science</i> , 2013 , 6, 2765	35.4	83
463	Nonionic Block Copolymer and Anionic Mixed Surfactants Directed Synthesis of Highly Ordered Mesoporous Silica with Bicontinuous Cubic Structure. <i>Chemistry of Materials</i> , 2005 , 17, 3228-3234	9.6	83
462	X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. <i>Nature Nanotechnology</i> , 2021 , 16, 1011-1018	28.7	83
461	Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. <i>Chemical Physics Letters</i> , 2011 , 510, 1-13	2.5	82
460	Synthesis of uniform ordered mesoporous TiO microspheres with controllable phase junctions for efficient solar water splitting. <i>Chemical Science</i> , 2019 , 10, 1664-1670	9.4	82
459	Spherical Mesoporous Materials from Single to Multilevel Architectures. <i>Accounts of Chemical Research</i> , 2019 , 52, 2928-2938	24.3	81
458	Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1591-1599	13	81
457	Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. <i>Carbon</i> , 2011 , 49, 3055-3064	10.4	81
456	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. <i>Nano Energy</i> , 2019 , 56, 426-433	17.1	81

455	Spatial Isolation of Carbon and Silica in a Single Janus Mesoporous Nanoparticle with Tunable Amphiphilicity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10009-10015	16.4	80
454	Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. <i>Catalysis Today</i> , 2015 , 243, 199-208	5.3	80
453	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8835		80
452	Controllable fabrication of uniform coreBhell structured zeolite@SBA-15 composites. <i>Chemical Science</i> , 2011 , 2, 2006	9.4	80
451	An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1884-92	16.4	79
450	Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance. <i>Carbon</i> , 2011 , 49, 4580-4588	10.4	79
449	Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. <i>Journal of Colloid and Interface Science</i> , 2010 , 342, 579-85	9.3	79
448	Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. <i>Nature Materials</i> , 2020 , 19, 203-211	27	79
447	In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1181-4	16.4	78
446	Synthesis of Mesoporous Silica from Commercial Poly(ethylene oxide)/Poly(butylene oxide) Copolymers: Toward the Rational Design of Ordered Mesoporous Materials. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13368-13375	3.4	78
445	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. <i>Chemistry of Materials</i> , 2007 , 19, 1870-1876	9.6	77
444	Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6780-7	16.4	77
443	Adaptive Thermochromic Windows from Active Plasmonic Elastomers. <i>Joule</i> , 2019 , 3, 858-871	27.8	76
442	Mesoporous silica nanoreactors for highly efficient proteolysis. <i>Chemistry - A European Journal</i> , 2005 , 11, 5391-6	4.8	76
441	Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. <i>Nano Research</i> , 2009 , 2, 242-253	10	74
440	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1: Synthesis and Characterization. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3053-3058	3.8	74
439	Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2888-92	16.4	73
438	Facile synthesis of hierarchically mesoporous silica particles with controllable cavity in their surfaces. <i>Langmuir</i> , 2010 , 26, 702-8	4	73

437	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. <i>Chemistry of Materials</i> , 2017 , 29, 2211-2217	9.6	72
436	A general "surface-locking" approach toward fast assembly and processing of large-sized, ordered, mesoporous carbon microspheres. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13764-8	16.4	72
435	Hierarchical CuB microsponges constructed from nanosheets for efficient photocatalysis. <i>Small</i> , 2013 , 9, 2702-8	11	72
434	Polynuclear Core-Based Nickel 1,4-Cyclohexanedicarboxylate Coordination Polymers as Temperature-Dependent Hydrothermal Reaction Products. <i>Crystal Growth and Design</i> , 2006 , 6, 664-668	3.5	72
433	Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14903-14909	13	71
432	Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity. Journal of Colloid and Interface Science, 2014 , 429, 62-7	9.3	70
431	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. <i>Nano Research</i> , 2015 , 8, 2503-2514	10	70
430	Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3895		70
429	Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films. <i>Langmuir</i> , 2005 , 21, 4071-6	4	70
428	Sol-Gel Synthesis of Metal-Phenolic Coordination Spheres and Their Derived Carbon Composites. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9838-9843	16.4	69
427	Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. <i>Small</i> , 2009 , 5, 2738-49	11	69
426	Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method. <i>Chemistry - A European Journal</i> , 2010 , 16, 9977-81	4.8	69
425	Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an <code>BcidB</code> ase pairlifoute. <i>Microporous and Mesoporous Materials</i> , 2004 , 67, 123-133	5.3	69
424	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15064-15071	13	68
423	General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. <i>ACS Nano</i> , 2013 , 7, 8706-14	16.7	68
422	A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10505-10	16.4	68
421	Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites. <i>Chemistry of Materials</i> , 2010 , 22, 1760-176	9.6	68
420	Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9044-8	16.4	68

419	Construction of 3D layer-pillared homoligand coordination polymers from a 2D layered precursor. <i>Inorganic Chemistry</i> , 2006 , 45, 8677-84	5.1	67
418	A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3162-3170	13	66
417	Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 307-2	012.8	66
416	Growth of Single-Crystal Mesoporous Carbons with Im3 m Symmetry. <i>Chemistry of Materials</i> , 2010 , 22, 4828-4833	9.6	66
415	Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. <i>Journal of Colloid and Interface Science</i> , 2008 , 318, 315-21	9.3	66
414	Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation. <i>Advanced Materials</i> , 2017 , 29, 1702274	24	65
413	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13025		65
412	Mesoporous Materials for Electrochemical Energy Storage and Conversion. <i>Advanced Energy Materials</i> , 2020 , 10, 2002152	21.8	65
411	Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. <i>ACS Central Science</i> , 2015 , 1, 400-8	16.8	63
410	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. <i>ACS Applied Materials & Distributed Materials & Distrib</i>	9.5	63
409	Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio. <i>Microporous and Mesoporous Materials</i> , 2010 , 135, 95-104	5.3	63
408	Microwave assisted preparation of efficient activated carbon from grapevine rhytidome for the removal of methyl violet from aqueous solution. <i>Journal of Analytical and Applied Pyrolysis</i> , 2011 , 92, 258-266	6	62
407	Mixed-Solvothermal Syntheses and Structures of Six New Zinc Phosphonocarboxylates with Zeolite-type and Pillar-Layered Frameworks. <i>Crystal Growth and Design</i> , 2008 , 8, 4045-4053	3.5	62
406	Chemical Vapor Deposition Growth of Well-Aligned Carbon Nanotube Patterns on Cubic Mesoporous Silica Films by Soft Lithography. <i>Chemistry of Materials</i> , 2001 , 13, 2240-2242	9.6	62
405	Recent advances in the synthesis of hierarchically mesoporous TiO materials for energy and environmental applications. <i>National Science Review</i> , 2020 , 7, 1702-1725	10.8	61
404	Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1620-8	10.1	61
403	A facile one-pot synthesis of uniform core-shell silver nanoparticle@mesoporous silica nanospheres. <i>Chemical Communications</i> , 2011 , 47, 8536-8	5.8	61
402	Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiOpand its application in drug delivery. <i>Nanoscale</i> , 2011 , 3, 4069-73	7.7	61

(2006-2016)

401	Direct Heating Amino Acids with Silica: A Universal Solvent-Free Assembly Approach to Highly Nitrogen-Doped Mesoporous Carbon Materials. <i>Advanced Functional Materials</i> , 2016 , 26, 6649-6661	15.6	60
400	Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 795-800		60
399	Hydrothermal Stability of Mesostructured Cellular Silica Foams. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5012-5019	3.8	60
398	Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. <i>Talanta</i> , 2009 , 78, 705-10	6.2	60
397	Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M = Al, Zn) catalysts. <i>Applied Catalysis A: General</i> , 2005 , 296, 186-193	5.1	60
396	Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. <i>Nano Energy</i> , 2019 , 66, 104113	17.1	59
395	sp-Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property. <i>Accounts of Chemical Research</i> , 2019 , 52, 714-725	24.3	59
394	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7997-8005	9.6	59
393	Formation Mechanism of Cubic Mesoporous Carbon Monolith Synthesized by Evaporation-Induced Self-assembly. <i>Chemistry of Materials</i> , 2012 , 24, 383-392	9.6	59
392	Preparation of highly ordered mesoporous WO3IIiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. <i>Microporous and Mesoporous Materials</i> , 2005 , 78, 37-41	5.3	59
391	Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. <i>Nano Research</i> , 2015 , 8, 238-245	10	58
390	Hollow TiO2N porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. <i>Nano Research</i> , 2016 , 9, 165-173	10	58
389	Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6822-5	16.4	58
388	A template carbonization strategy to synthesize ordered mesoporous silica microspheres with trapped sulfonated carbon nanoparticles for efficient catalysis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10368-72	16.4	58
387	One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. <i>Chemistry - A European Journal</i> , 2012 , 18, 13642-50	4.8	58
386	One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2495-503	3.6	58
385	Assembly of uniform photoluminescent microcomposites using a novel micro-fluidic-jet-spray-dryer. <i>AICHE Journal</i> , 2011 , 57, 2726-2737	3.6	58
384	Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses. <i>Analytical Chemistry</i> , 2006 , 78, 4811-9	7.8	58

383	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7773-7780	9.6	57
382	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined coreBhell nanostructures. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6071-6074	13	57
381	Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. <i>Journal of Materials Chemistry</i> , 2003 , 13, 666-668		57
380	Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16	7 5 5:46	57 5 2
379	Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion. <i>Small</i> , 2016 , 12, 860-7	11	56
378	Uniform coreEhell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6492-	6500	56
377	Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications. <i>Theranostics</i> , 2013 , 3, 292-305	12.1	56
376	Hierarchically Porous Silica with Ordered Mesostructure from Confinement Self-Assembly in Skeleton Scaffolds. <i>Chemistry of Materials</i> , 2010 , 22, 494-503	9.6	56
375	A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012 , 514, 76-80	5.7	55
374	Robust conductive mesoporous carbonBilica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1691		55
373	Effects of ammonia/silica molar ratio on the synthesis and structure of bimodal mesopore silica xerogel. <i>Microporous and Mesoporous Materials</i> , 2004 , 71, 87-97	5.3	55
372	Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. <i>Carbon</i> , 2014 , 71, 276-283	10.4	54
371	Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8069		54
370	Ordered Mesoporous SiOC and SiCN Ceramics from Atmosphere-Assisted in Situ Transformation. <i>Chemistry of Materials</i> , 2007 , 19, 1761-1771	9.6	54
369	Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite. <i>Journal of Materials Science</i> , 2007 , 42, 7057-7061	4.3	54
368	Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. <i>Analytica Chimica Acta</i> , 2004 , 519, 31-38	6.6	54
367	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. <i>Journal of the American Chemical Society</i> , 2017 , 139, 517-526	16.4	53
366	Interfacial Super-Assembled Porous CeO2/C Frameworks Featuring Efficient and Sensitive Decomposing Li2O2 for Smart LiD2 Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901751	21.8	53

365	Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15781-6	16.4	53
364	Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. <i>Journal of Power Sources</i> , 2011 , 196, 1608-1614	8.9	53
363	Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. <i>Microporous and Mesoporous Materials</i> , 2010 , 132, 543-551	5.3	53
362	The influence of carbon source on the wall structure of ordered mesoporous carbons. <i>Journal of Porous Materials</i> , 2008 , 15, 601-611	2.4	53
361	Mesoporous Silica: An Efficient Nanoreactor for Liquid Liquid Biphase Reactions. <i>Chemistry of Materials</i> , 2007 , 19, 4379-4381	9.6	53
360	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core iPorous shell microparticles. <i>Nano Today</i> , 2016 , 11, 464-482	17.9	53
359	Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing. <i>Nano Letters</i> , 2014 , 14, 3668-73	11.5	52
358	Significantly Enhanced CO2/CH4 Separation Selectivity within a 3D Prototype Metal©rganic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 2227-2231	2.3	52
357	Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection. <i>Advanced Optical Materials</i> , 2015 , 3, 404-411	8.1	51
356	Mesoporous TiO@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage. <i>Nanoscale</i> , 2017 , 9, 1539-1546	7.7	50
355	Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores. <i>Matter</i> , 2019 , 1, 527-538	12.7	50
354	Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. <i>Analytical Chemistry</i> , 2014 , 86, 9749-57	7.8	50
353	Designed synthesis of LiMn2O4 microspheres with adjustable hollow structures for lithium-ion battery applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 837-842	13	50
352	N,N?-diureylenepiperazine-bridged periodic mesoporous organosilica for controlled drug delivery. <i>Microporous and Mesoporous Materials</i> , 2011 , 141, 94-101	5.3	50
351	Highly ordered mesoporous carbonaceous frameworks from a template of a mixed amphiphilic triblock-copolymer system of PEO-PPO-PEO and reverse PPO-PEO-PPO. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1282-9	4.5	50
350	Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 22, 147-153	19.4	49
349	Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity. <i>Catalysis Today</i> , 2001 , 68, 11-20	5.3	49
348	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. <i>Advanced Functional Materials</i> , 2019 , 29, 1808900	15.6	48

347	Templated Fabrication of CoreBhell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas. <i>Chemistry of Materials</i> , 2014 , 26, 3316-3321	9.6	48
346	Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains. <i>Microporous and Mesoporous Materials</i> , 2004 , 67, 135-141	5.3	48
345	Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. <i>Materials Horizons</i> , 2014 , 1, 439	14.4	47
344	A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metal®rganic Frameworks of Diverse Structures and Porosities. <i>Crystal Growth and Design</i> , 2010 , 10, 2775-2779	3.5	47
343	Nanocasting fabrication of ordered mesoporous phenolformaldehyde resins with various structures and their adsorption performances for basic organic compounds. <i>Microporous and Mesoporous Materials</i> , 2010 , 128, 165-179	5.3	47
342	Direct electrodeposition of gold nanotube arrays for sensing applications. <i>Journal of Materials Chemistry</i> , 2008 , 18, 463-467		47
341	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4478-4485	13	46
340	Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. <i>Materials Chemistry and Physics</i> , 2007 , 103, 489-493	4.4	46
339	Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection. <i>Sensors and Actuators B: Chemical</i> , 2007 , 126, 18-23	8.5	45
338	Macroscopic synthesis of ultrafine Ndoped carbon nanofibers for superior capacitive energy storage. <i>Science Bulletin</i> , 2019 , 64, 1617-1624	10.6	44
337	Dual-Pore Mesoporous Carbon@Silica Composite CoreBhell Nanospheres for Multidrug Delivery. <i>Angewandte Chemie</i> , 2014 , 126, 5470-5474	3.6	44
336	The anion sequence in the phase transformation of mesostructures templated by non-ionic block copolymers. <i>Chemical Communications</i> , 2004 , 2240-1	5.8	44
335	Sequential Chemistry Toward Core-Shell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3287-3293	16.4	44
334	Generalized synthesis of coreEhell structured nano-zeolite@ordered mesoporous silica composites. <i>Catalysis Today</i> , 2013 , 204, 2-7	5.3	43
333	Organosilane-assisted synthesis of ordered mesoporous poly(furfuryl alcohol) composites. <i>Journal of Materials Chemistry</i> , 2009 , 19, 131-140		43
332	Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient COII Adsorption. <i>Scientific Reports</i> , 2016 , 6, 20769	4.9	43
331	Ordered Macro-/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Water-Splitting. <i>Advanced Energy Materials</i> , 2014 , 4, 1301725	21.8	42
330	Conformal Coating of Co/N-Doped Carbon Layers into Mesoporous Silica for Highly Efficient Catalytic Dehydrogenation-Hydrogenation Tandem Reactions. <i>Small</i> , 2017 , 13, 1702243	11	42

329	Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows. <i>Nano Energy</i> , 2020 , 73, 104785	17.1	42
328	A zeolite-like zinc phosphonocarboxylate framework and its transformation into two- and three-dimensional structures. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1549-54	4.5	41
327	Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di- and tri-block copolymers. <i>Microporous and Mesoporous Materials</i> , 2001 , 44-45, 65-72	5.3	41
326	Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. <i>Nature Communications</i> , 2019 , 10, 4387	17.4	40
325	A Facile fabrication of mesoporous coreEhell CaO-Based pellets with enhanced reactive stability and resistance to attrition in cyclic CO2 capture. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16577-16588	13	40
324	Direct imaging Au nanoparticle migration inside mesoporous silica channels. ACS Nano, 2014 , 8, 10455-6	50 6.7	40
323	CoreBhell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. <i>Microporous and Mesoporous Materials</i> , 2013 , 176, 16-24	5.3	40
322	Development of Sinter-Resistant CoreBhell LaMnxFe1NO3@mSiO2 Oxygen Carriers for Chemical Looping Combustion. <i>Energy & Document States</i> 2012, 26, 3091-3102	4.1	40
321	Degradation-Restructuring Induced Anisotropic Epitaxial Growth for Fabrication of Asymmetric Diblock and Triblock Mesoporous Nanocomposites. <i>Advanced Materials</i> , 2017 , 29, 1701652	24	39
320	Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell. <i>Advanced Materials</i> , 2018 , 30, e1800345	24	39
319	Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. <i>Chemical Communications</i> , 2014 , 50, 713-5	5.8	39
318	Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 7166-7170	3.6	39
317	Stable Ti Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie - International Edition, 2020 , 59, 17676-17683	16.4	38
316	Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(VI). <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3954-3966	13	38
315	Azobenzene-derived surfactants as phototriggered recyclable templates for the synthesis of ordered mesoporous silica nanospheres. <i>Advanced Materials</i> , 2014 , 26, 1782-7	24	38
314	Facile preparation of CuMn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10654	13	38
313	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. <i>Nano Research</i> , 2017 , 10, 4351-4359	10	38
312	Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage. <i>Microporous and Mesoporous Materials</i> , 2009 , 119, 39-46	5.3	38

311	Ordered Mesostructured Rare-Earth Fluoride Nanowire Arrays with Upconversion Fluorescence. Chemistry of Materials, 2008 , 20, 3778-3784	6	38
310	Nanocasting Synthesis of Ordered Mesoporous Silicon Nitrides with a High Nitrogen Content. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 112-116	8	38
309	Synthesis of Highly Ordered Thermally Stable Cubic Mesostructured Zirconium Oxophosphate Templated by Tri-Headgroup Quaternary Ammonium Surfactants. <i>Chemistry of Materials</i> , 2003 , 15, 4046 4	651	38
308	Synthesis of replica mesostructures by the nanocasting strategy. <i>Journal of Materials Chemistry</i> , 2005 ,		38
307	Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures. <i>CheM</i> , 2018 , 4, 2436-2450	5.2	38
306	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. <i>Chemistry of Materials</i> , 2014 , 26, 2438-2444	6	37
305	Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. <i>Biomaterials</i> , 2017 , 115, 9-18	5 .6	37
304	Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates. <i>Angewandte Chemie - International Edition</i> , 16 2015 , 54, 8425-9	5.4	37
303	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). <i>Solid State Sciences</i> , 2011 , 13, 784-792	4	37
302	Two Novel Zinc(II) Metal®rganic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. <i>Crystal Growth and Design</i> , 2011 , 11, 2811-2816	5	37
301	Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly. <i>Nano Research</i> , 2009 , 2, 292-305)	37
300	Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane. <i>Catalysis Letters</i> , 2001 , 71, 117-125	8	37
299	Near-Infrared-Activated Upconversion Nanoprobes for Sensitive Endogenous Zn Detection and Selective On-Demand Photodynamic Therapy. <i>Analytical Chemistry</i> , 2017 , 89, 3492-3500	8	36
298	Unique hybrid NiP/MoO@MoS nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. <i>Nanoscale</i> , 2017 , 9, 17349-17356	7	36
297	Synthesis of carbon nanotubes@mesoporous carbon corellhell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8975-8983 ³³	3	36
296	Synthesis of Mesoporous Silica/Reduced Graphene Oxide Sandwich-Like Sheets with Enlarged and Bunneling Mesochannels. <i>Chemistry of Materials</i> , 2015 , 27, 5577-5586	6	36
295	Mesoporous TiO/TiC@C Composite Membranes with Stable TiO-C Interface for Robust Lithium Storage. <i>IScience</i> , 2018 , 3, 149-160	1	36
294	Rational synthesis of superparamagnetic core@hell structured mesoporous microspheres with large pore sizes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18322-18328	3	36

293	Facile Synthesis of Transparent Mesostructured Composites and Corresponding Crack-free Mesoporous Carbon/Silica Monoliths. <i>Chemistry of Materials</i> , 2011 , 23, 2353-2360	9.6	36	
292	Synthesis of Carbonaceous Poly(furfuryl alcohol) Membrane for Water Desalination. <i>Industrial</i> & amp; Engineering Chemistry Research, 2010 , 49, 4175-4180	3.9	36	
291	A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. <i>Applied Surface Science</i> , 2010 , 256, 5334-5342	6.7	36	
290	Ordered bimodal mesoporous silica with tunable pore structure and morphology. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 6-15	5.3	36	
289	Hydrothermal Synthesis of New Pure Beryllophosphate Molecular Sieve Phases from Concentrated Amines. <i>Chemistry of Materials</i> , 2001 , 13, 2042-2048	9.6	36	
288	Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization. <i>Advanced Energy Materials</i> , 2021 , 11, 2003303	21.8	36	
287	Mass Production of Monodisperse Carbon Microspheres with Size-Dependent Supercapacitor Performance via Aqueous Self-Catalyzed Polymerization. <i>ChemPlusChem</i> , 2017 , 82, 872-878	2.8	35	
286	Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. <i>Nano Research</i> , 2020 , 13, 1013-1019	10	35	
285	The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 305-314	5.3	35	
284	Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. <i>New Journal of Chemistry</i> , 2003 , 27, 844-849	₉ 3.6	35	
283	Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. <i>Chemical Science</i> , 2020 , 11, 2819-2827	9.4	34	
282	Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide. <i>Journal of Colloid and Interface Science</i> , 2012 , 382, 1-12	9.3	34	
281	Carbon-Dot-Sensitized, Nitrogen-Doped TiO2 in Mesoporous Silica for Water Decontamination through Nonhydrophobic Enrichment-Degradation Mode. <i>Chemistry - A European Journal</i> , 2015 , 21, 179	44-50	34	
2 80	Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. <i>Carbon</i> , 2007 , 45, 2209-2216	10.4	34	
279	Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. <i>CheM</i> , 2020 , 6, 1097-1112	16.2	33	
278	Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6. <i>Journal of Colloid and Interface Science</i> , 2010 , 341, 353-8	9.3	33	
277	The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. <i>Chemical Physics Letters</i> , 2004 , 389, 327-331	2.5	33	
276	In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15. <i>Chemical Physics Letters</i> , 2002 , 360, 585-591	2.5	33	

275	Hierarchical porous structures by using zeolite nanocrystals as building blocks. <i>Microporous and Mesoporous Materials</i> , 2001 , 48, 73-78	5.3	33
274	Interfacial Assembly of Mesoporous Silica-Based Optical Heterostructures for Sensing Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1906950	15.6	33
273	Filtration Shell Mediated Power Density Independent Orthogonal Excitations Emissions Upconversion Luminescence. <i>Angewandte Chemie</i> , 2016 , 128, 2510-2515	3.6	33
272	A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6536		32
271	Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. <i>Microporous and Mesoporous Materials</i> , 2010 , 130, 26-3	1 5.3	32
270	Cementing Mesoporous ZnO with Silica for Controllable and Switchable Gas Sensing Selectivity. <i>Chemistry of Materials</i> , 2019 , 31, 8112-8120	9.6	31
269	Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19168-19176	13	31
268	Elemental Migration in Core/Shell Structured Lanthanide Doped Nanoparticles. <i>Chemistry of Materials</i> , 2019 , 31, 5608-5615	9.6	31
267	Synthesis of ordered small pore mesoporous silicates with tailorable pore structures and sizes by polyoxyethylene alkyl amine surfactant. <i>Microporous and Mesoporous Materials</i> , 2006 , 90, 23-31	5.3	31
266	The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates. <i>Nanotechnology</i> , 2002 , 13, 741-745	3.4	31
265	Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21550-21557	13	31
264	Recent Progress of Porous Materials in Lithium-Metal Batteries. <i>Small Structures</i> , 2021 , 2, 2000118	8.7	31
263	Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12803-12810	13	30
262	Ordered mesoporous C/TiO2 composites as advanced sonocatalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16452-16458	13	30
261	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. <i>NPG Asia Materials</i> , 2014 , 6, e117-e117	10.3	30
260	Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7274		30
259	Branched artificial nanofinger arrays by mesoporous interfacial atomic rearrangement. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4260-6	16.4	29
258	Formation of uniform large SBA-15 microspheres via spray drying. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19500-19508	13	29

257	Controllable fabrication of dendritic mesoporous silicalarbon nanospheres for anthracene removal. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11045	13	29	
256	Free-standing highly ordered mesoporous carbonBilica composite thin films. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13490	13	29	
255	A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7525	13	29	
254	Organic groups functionalised mesoporous silicates. <i>International Journal of Nanotechnology</i> , 2007 , 4, 66	1.5	29	
253	Hydrothermal synthesis of new berylloborophosphates MIBeBPO (MI=K+, Na+ and NH4+) with zeolite ANA framework topology. <i>Microporous and Mesoporous Materials</i> , 2003 , 57, 309-316	5.3	29	
252	Synthesis and characterization of hydroxy-CrAl pillared clays. <i>Zeolites</i> , 1995 , 15, 58-66		29	
251	Preparation of Secondary Mesopores in Mesoporous AnataseBilica Nanocomposites with Unprecedented-High Photocatalytic Degradation Performances. <i>Advanced Functional Materials</i> , 2016 , 26, 964-976	15.6	29	
250	A hybrid erbium(III)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging. <i>Nature Materials</i> , 2021 , 20, 1571-1578	27	29	
249	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. <i>ACS Catalysis</i> , 2015 , 5, 27-33	13.1	28	
248	Formation of monodisperse mesoporous silica microparticles via spray-drying. <i>Journal of Colloid and Interface Science</i> , 2014 , 418, 225-33	9.3	28	
247	Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. <i>Mikrochimica Acta</i> , 2009 , 167, 109-116	5.8	28	
246	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009 , 333, 329-34	9.3	28	
245	Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopy of Aluminophosphate-Based Mesoporous Molecular Sieve Containing Framework Manganese. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 6943-6948	3.4	28	
244	Facile method for fabrication of nanocomposite films with an ordered porous surface. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7706-12	3.4	28	
243	Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. <i>Journal of Colloid and Interface Science</i> , 2017 , 487, 354-359	9.3	27	
242	Ligand exchange triggered controlled-release targeted drug delivery system based on coreShell superparamagnetic mesoporous microspheres capped with nanoparticles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17677		27	
241	A facile strategy for the preparation of well-dispersed bimetal oxide CuFe2O4 nanoparticles supported on mesoporous silica. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6742	13	27	
240	A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene oxide)-b-poly(methyl methacrylate) as the template. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8819	13	27	

239	Self-Assembled Nanoparticle Supertubes as Robust Platform for Revealing Long-Term, Multiscale Lithiation Evolution. <i>Matter</i> , 2019 , 1, 976-987	12.7	26
238	A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11908		26
237	Synthesis of ordered mesoporous bifunctional TiO2BiO2Bolymer nanocomposites. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8610		26
236	Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. <i>Carbon</i> , 2006 , 44, 1601-1604	10.4	26
235	Facile Fabrication of Dendritic Mesoporous SiO2@CdTe@SiO2 Fluorescent Nanoparticles for Bioimaging. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 261-270	3.1	26
234	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801269	4.6	26
233	Ultrahigh Surface Area N-Doped Hierarchically Porous Carbon for Enhanced CO Capture and Electrochemical Energy Storage. <i>ChemSusChem</i> , 2019 , 12, 3541-3549	8.3	25
232	Highly Efficient Glycerol Acetalization over Supported Heteropoly Acid Catalysts. <i>ChemCatChem</i> , 2018 , 10, 1918-1925	5.2	25
231	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15863-15868	16.4	25
230	Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic CrystalsA Multifunctional Fluorescence-Based Sensor Platform. <i>Scientific Reports</i> , 2015 , 5, 14439	4.9	25
229	Synthesis of hierarchically nanoporous silica films for controlled drug loading and release. <i>Nanoscale</i> , 2011 , 3, 3329-33	7.7	25
228	Electrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. <i>Electrochemistry Communications</i> , 2009 , 11, 227-230	5.1	25
227	Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. <i>Carbon</i> , 2011 , 49, 1305-1317	10.4	25
226	Synthesis of ordered mesoporous crystalline carbon-anatase composites with high titania contents. Journal of Colloid and Interface Science, 2008 , 328, 367-73	9.3	25
225	The influence of precursors on Rh/SBA-15 catalysts for N2O decomposition. <i>Applied Catalysis B: Environmental</i> , 2008 , 84, 490-496	21.8	25
224	Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. <i>Electrochemistry Communications</i> , 2008 , 10, 1864-1867	5.1	25
223	Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. <i>CheM</i> , 2021 , 7, 1020-1032	16.2	25
222	Mesoporous silica nanoparticles for glutathione-triggered long-range and stable release of hydrogen sulfide. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4451-4457	7.3	24

221	Sorption interactions of plutonium and europium with ordered mesoporous carbon. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11209-11221	13	24	
220	Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H2S Sensing. <i>Angewandte Chemie</i> , 2014 , 126, 9181-9186	3.6	24	
219	Free-standing and bridged amine-functionalized periodic mesoporous organosilica films. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7854		24	
218	Impact of film thickness on the morphology of mesoporous carbon films using organic-organic self-assembly. <i>Langmuir</i> , 2011 , 27, 5607-15	4	24	
217	Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials. <i>Adsorption</i> , 2009 , 15, 123-132	2.6	24	
216	Synthesis and phase behaviors of bicontinuous cubic mesoporous silica from triblock copolymer mixed anionic surfactant. <i>Microporous and Mesoporous Materials</i> , 2007 , 105, 34-40	5.3	24	
215	Synthesis of Large-Pore Periodic Mesoporous Organosilica (PMO) with Bicontinuous Cubic Structure of IaBdSymmetry. <i>Chemistry Letters</i> , 2005 , 34, 182-183	1.7	24	
214	Interfacial Assembly and Applications of Functional Mesoporous Materials. <i>Chemical Reviews</i> , 2021 , 121, 14349-14429	68.1	24	
213	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8579-8583	3.6	23	
212	Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection. <i>Matter</i> , 2019 , 1, 1	27 4 21 7 8	423	
211	One-dimensional CoS-MoS nano-flakes decorated MoO sub-micro-wires for synergistically enhanced hydrogen evolution. <i>Nanoscale</i> , 2019 , 11, 3500-3505	7.7	23	
210	A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11603-6	16.4	23	
209	Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 429-35	9.3	23	
208	[C6N4H24]CoBe6P6O24BH2O: a novel 3-dimensional beryllophosphate zeolite-like structure encapsulating CoII ions. <i>Journal of Materials Chemistry</i> , 2002 , 12, 658-662		23	
207	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for	13	23	
	synergistically boosting hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17874-17881	19		
206	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15475-15489	16.4		
206	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. <i>Journal of the American Chemical</i>			

203	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3850-3857	13	22
202	Sol L el Synthesis of Metal P henolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018 , 130, 9986-9991	3.6	22
201	Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. <i>Mikrochimica Acta</i> , 2009 , 167, 75-79	5.8	22
200	Synthesis of Monodisperse Mesoporous TiO2 Nanospheres from a Simple Double-Surfactant Assembly-Directed Method for Lithium Storage. <i>ACS Applied Materials & Double Surfaces</i> , 2016 , 8, 25586-	- 9 4 ⁵	22
199	In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors. <i>Small</i> , 2015 , 11, 1003-10	11	21
198	Catalyst-Free Epoxidation of Limonene to Limonene Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5115-5121	8.3	21
197	Organic-functionalized sodalite nanocrystals and their dispersion in solvents. <i>Microporous and Mesoporous Materials</i> , 2007 , 106, 262-267	5.3	21
196	Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports. <i>Journal of Porous Materials</i> , 2008 , 15, 145-150	2.4	21
195	Hexylene- and octylene-bridged polysilsesquioxane hybrid crystals self-assembled by dimeric building blocks with ring structures. <i>Chemistry - A European Journal</i> , 2006 , 12, 8484-90	4.8	21
194	Surfactant-templated synthesis of 1D single-crystalline polymer nanostructures. <i>Small</i> , 2006 , 2, 517-21	11	21
193	A template-free method for hollow Ag2S semiconductor with a novel quasi-network microstructure. <i>Chemical Physics Letters</i> , 2002 , 360, 355-358	2.5	21
192	Microwave-Assisted Solvothermal Synthesis of Radial ZnS Nanoribbons. <i>Chemistry Letters</i> , 2004 , 33, 522	2 - Б 7 3	21
191	Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery. <i>Nature Communications</i> , 2021 , 12, 2973	17.4	21
190	Scalable synthesis of mesoporous titania microspheres via spray-drying method. <i>Journal of Colloid and Interface Science</i> , 2016 , 479, 150-159	9.3	21
189	Broadening microwave absorption via a multi-domain structure. APL Materials, 2017, 5, 046104	5.7	20
188	Preparation of a mesoporous CuMn/TiO2 composite for the degradation of Acid Red 1. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7399-7405	13	20
187	Vapor assisted in situitransformation of mesoporous carbon lilica composite for hierarchically porous zeolites. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 495-500	5.3	20
186	An unusual example of morphology controlled periodic mesoporous organosilica single crystals. Journal of Materials Chemistry, 2010 , 20, 6460		20

185	Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds. Journal of Colloid and Interface Science, 2016 , 477, 54-63	9.3	20
184	A Universal Lab-on-Salt-Particle Approach to 2D Single-Layer Ordered Mesoporous Materials. <i>Advanced Materials</i> , 2020 , 32, e1906653	24	19
183	Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple StBer-Solution Growth Approach. <i>Angewandte Chemie</i> , 2012 , 124, 2215-2219	3.6	19
182	Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. <i>Journal of Materials Chemistry</i> , 2010 , 20, 90-93		19
181	A mild method to remove organic templates in periodic mesoporous organosilicas by the oxidation of perchlorates. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 513-517	5.3	19
180	Ordered hierarchical porous platinum membranes with tailored mesostructures. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10101-5	16.4	19
179	Synthesis of a new organically templated zeolite-like zirconogermanate (C4N2H12)[ZrGe4O10F2] with cavansite topology. <i>Journal of Materials Chemistry</i> , 2003 , 13, 308-311		19
178	Synthesis of mesoporous manganosilicates Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L at a low surfactant/Si ratio. <i>Studies in Surface Science and Catalysis</i> , 1995 , 181-188	1.8	19
177	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. <i>IScience</i> , 2020 , 23, 100761	6.1	19
176	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. <i>Chemical Science</i> , 2015 , 6, 4029-4034	9.4	18
175	High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide. <i>Catalysis Science and Technology</i> , 2018 , 8, 1704-1711	5.5	18
174	Preparation of mesoporous TiO2tt composites as an advanced Ni catalyst support for reduction of 4-nitrophenol. <i>New Journal of Chemistry</i> , 2016 , 40, 4200-4205	3.6	18
173	A Resol-Assisted Co-Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. <i>Angewandte Chemie</i> , 2013 , 125, 10699-10704	3.6	18
172	Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9618-9626	3.8	18
171	Hydrothermal Synthesis and Photoluminescence of Hierarchical Lead Tungstate Superstructures: Effects of Reaction Temperature and Surfactants. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1736-1742	2.3	18
170	Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. <i>Rapid Communications in Mass Spectrometry</i>	2.2	18
169	Doped mesoporous silica fibers: the internal structure. <i>Microporous and Mesoporous Materials</i> , 2000 , 39, 37-42	5.3	18
168	Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery. <i>Journal of Membrane Science</i> , 2016 , 510, 437-446	9.6	18

167	Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene. <i>Langmuir</i> , 2016 , 32, 9922-9929	4	18
166	Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. <i>Nature Communications</i> , 2021 , 12, 5662	17.4	18
165	TiO2 interpenetrating networks decorated with SnO2 nanocrystals: enhanced activity of selective catalytic reduction of NO with NH3. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1405-1409	13	17
164	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11523		17
163	Copper oxide activation of soft-templated mesoporous carbons and their electrochemical properties for capacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1547-1555		17
162	Thermosetting polymer templated nanoporous sinter-active layer for low temperature solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1122-1126		17
161	Synthesis of Ti-containing mesoporous silicates from inorganic titanium sources. <i>Catalysis Today</i> , 2009 , 148, 19-27	5.3	17
160	A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. <i>Journal of Materials Chemistry</i> , 2008 , 18, 408-415		17
159	Synthesis of germanium oxide mesostructures with a new intermediate state. <i>Microporous and Mesoporous Materials</i> , 2002 , 56, 219-225	5.3	17
158	Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric. <i>Accounts of Materials Research</i> , 2020 , 1, 100-114	7.5	17
157	Intracellular and in Vivo Cyanide Mapping via Surface Plasmon Spectroscopy of Single Au-Ag Nanoboxes. <i>Analytical Chemistry</i> , 2017 , 89, 2583-2591	7.8	16
156	Distinct Packings of Supramolecular Building Blocks in Metal-Organic Frameworks Based on Imidazoledicarboxylic Acid. <i>Inorganic Chemistry</i> , 2015 , 54, 9678-80	5.1	16
155	Self-assembly of bi-functional peptides on large-pore mesoporous silica nanoparticles for miRNA binding and delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7653-7657	7.3	16
154	Hollow micro-mesoporous carbon polyhedra produced by selective removal of skeletal scaffolds. <i>Carbon</i> , 2012 , 50, 2546-2555	10.4	16
153	Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17371		16
152	Free-Standing Mesoporous Silica/Carbon Composite Films with Crystalline Silica Wall from Ethylene-Bridged Organosilane. <i>Chemistry of Materials</i> , 2010 , 22, 18-26	9.6	16
151	New catalysts for dichlorodifluoromethane hydrolysis: Mesostructured titanium and aluminum phosphates. <i>Journal of Molecular Catalysis A</i> , 2005 , 242, 218-223		16
150	Monodisperse Ultrahigh Nitrogen-Containing Mesoporous Carbon Nanospheres from Melamine-Formaldehyde Resin <i>Small Methods</i> , 2021 , 5, e2001137	12.8	16

(2007-2012)

149	Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials. <i>Microporous and Mesoporous Materials</i> , 2012 , 155, 252-257	5.3	15	
148	Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. <i>APL Materials</i> , 2014 , 2, 113302	5.7	15	
147	Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances. <i>Talanta</i> , 2011 , 83, 1507-14	6.2	15	
146	Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10996-1003	3.6	15	
145	Impact of nanopore morphology on cell viability on mesoporous polymer and carbon surfaces. <i>Acta Biomaterialia</i> , 2010 , 6, 3035-43	10.8	15	
144	Manipulated photocurrent generation from pigment-exchanged photosynthetic proteins adsorbed to nanostructured WO3-TiO2 electrodes. <i>Chemical Communications</i> , 2006 , 785-7	5.8	15	
143	Synthesis and characterization of a novel organically templated open framework zirconogermanate with three- and seven-membered rings. <i>Inorganic Chemistry</i> , 2003 , 42, 5960-5	5.1	15	
142	Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures. <i>Journal of Solid State Chemistry</i> , 2003 , 173, 435-441	3.3	15	
141	Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	15	
140	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6922-6932	16.4	15	
139	A versatile in situ etching-growth strategy for synthesis of yolk@hell structured periodic mesoporous organosilica nanocomposites. <i>RSC Advances</i> , 2016 , 6, 51470-51479	3.7	15	
138	Nano-spatially confined Pdtu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9545-9553	13	14	
137	A vesicle-aggregation-assembly approach to highly ordered mesoporous Ealumina microspheres with shifted double-diamond networks. <i>Chemical Science</i> , 2018 , 9, 7705-7714	9.4	14	
136	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids 2019 , 1, 290-296		14	
135	Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates. <i>Angewandte Chemie</i> , 2015 , 127, 8545-8549	3.6	14	
134	Extensive Inspection of an Unconventional Mesoporous Silica Material at All Length-Scales. <i>Chemistry of Materials</i> , 2011 , 23, 229-238	9.6	14	
133	Synthesis of easily shaped ordered mesoporous titanium-containing silica. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4705		14	
132	Synthesis, structure, and adsorption properties of a three-dimensional porous yttriumBrganic coordination network. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 16-20	5.3	14	

131	Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 633-640	5.3	14
130	Highly dispersed Fete mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17174-17184	13	14
129	Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. <i>Nature Communications</i> , 2021 , 12, 4556	17.4	14
128	Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. <i>New Journal of Chemistry</i> , 2018 , 42, 2669-2674	3.6	13
127	Hydrothermal synthesis of novel AlPO4-5 brooms and nano-fibers and their templated carbon structures. <i>CrystEngComm</i> , 2009 , 11, 739	3.3	13
126	Synthesis and characterization of nickel phosphonopropionate hybrid materials. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 447-450	3.1	13
125	Sequential Chemistry Toward CoreBhell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 3313-3319	3.6	13
124	Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart HO-Sensitive Nanoswimmers. <i>ACS Nano</i> , 2021 ,	16.7	13
123	LiquidBolid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered MembraneBased Devices toward Electrochemical Energy Systems. <i>Advanced Energy Materials</i> , 2019 , 9, 1804005	21.8	12
122	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. <i>NPG Asia Materials</i> , 2015 , 7, e204-e204	10.3	12
121	Enhancing enzymatic stability of bioactive papers by implanting enzyme-immobilized mesoporous silica nanorods into paper. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4719-4722	7.3	12
120	Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance. <i>ChemSusChem</i> , 2013 , 6, 1938-44	8.3	12
119	On the improvement of pore accessibility through post-synthesis hydrothermal treatments of spray dried SBA-15 microspheres. <i>Chemical Engineering Science</i> , 2015 , 127, 276-284	4.4	12
118	The Synthesis of Mesoporous Molecular Sieves. Studies in Surface Science and Catalysis, 2007, 168, 241-I	lh.8	12
117	Sol-gel synthesis of methyl-modified mesoporous materials with dual porosity. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 777-783	3.9	12
116	An Easy Route for the Synthesis of Ordered Three-Dimensional Large-Pore Mesoporous Organosilicas withIm-3mSymmetry. <i>Chemistry Letters</i> , 2004 , 33, 1132-1133	1.7	12
115	Preparation and characterization of lanthanum-doped pillared clays. <i>Materials Research Bulletin</i> , 1993 , 28, 939-949	5.1	12
114	Ensembles of Photonic Beads: Optical Properties and Enhanced LightMatter Interactions. Advanced Optical Materials, 2020, 8, 1901537	8.1	11

(2010-2016)

113	Capping agent-free highly dispersed noble metal nanoparticles supported in ordered mesoporous carbon with short channels and their catalytic applications. <i>RSC Advances</i> , 2016 , 6, 61064-61072	3.7	11
112	Synthesis of core-shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption. <i>Journal of Colloid and Interface Science</i> , 2014 , 428, 251-6	9.3	11
111	Highly ordered cubic mesoporous materials with the same symmetry but tunable pore structures. <i>Langmuir</i> , 2012 , 28, 16382-92	4	11
110	Mesoporous tungsten titanate as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of biomolecules. <i>Analytica Chimica Acta</i> , 2007 , 593, 13-9	6.6	11
109	New organically templated gallium oxalate-phosphate structures based on Ga4(PO4)4(C2O4) building unit. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 1931-1937	3.3	11
108	Preparation and Enhanced Electrochromic Property of Three-dimensional Ordered Mesostructured Mixed Tungsten Titanium Oxides. <i>Chemistry Letters</i> , 2004 , 33, 1396-1397	1.7	11
107	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. <i>Advanced Materials</i> , 2021 , 33, e2100820	24	11
106	Spray-drying water-based assembly of hierarchical and ordered mesoporous silica microparticles with enhanced pore accessibility for efficient bio-adsorption. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 529-540	9.3	10
105	Ordered, Highly Zeolitized Mesoporous Aluminosilicates Produced by a Gradient Acidic Assembly Growth Strategy in a Mixed Template System. <i>Chemistry of Materials</i> , 2016 , 28, 4859-4866	9.6	10
104	Reduction of plutonium in acidic solutions by mesoporous carbons. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2016 , 307, 2593-2601	1.5	10
103	CoFe2O4 Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSM-5 Catalysts. <i>Advanced Functional Materials</i> , 2018 , 28, 1802088	15.6	10
102	Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles. <i>ACS Nano</i> , 2021 , 15, 6787-6800	16.7	10
101	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol. <i>ACS Energy Letters</i> , 2018 , 3, 26	4 <i>3</i> -2 6 5	5 ¹⁰
100	One-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials for electrocatalytic reduction of aromatic ketones. <i>Nanoscale</i> , 2017 , 9, 17807-17813	7.7	9
99	Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 21922-21935	9.5	9
98	A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. CrystEngComm, 2016 , 18, 4343-4348	3.3	9
97	Magnetic mesoporous TiO2 microspheres for sustainable arsenate removal from acidic environments. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2132-2139	6.8	9
96	Nanoporous niobium phosphate electrolyte membrane for low temperature fuel cell. <i>Journal of Membrane Science</i> , 2010 , 356, 147-153	9.6	9

95	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	9
94	Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors. <i>Nano Letters</i> , 2021 , 21, 6071-6079	11.5	9
93	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. <i>Scientific Reports</i> , 2014 , 4, 7420	4.9	8
92	Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. <i>Angewandte Chemie</i> , 2020 , 132, 17829-17836	3.6	8
91	Grand Challenges in Chemistry for 2016 and Beyond. ACS Central Science, 2016, 2, 1-3	16.8	8
90	Advanced electron microscopy characterization for pore structure of mesoporous materials; a study of FDU-16 and FDU-18. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13664		8
89	Hydrothermal synthesis and characterization of new hybrid open-framework indium phosphate-oxalates. <i>Science Bulletin</i> , 2004 , 49, 658-664		8
88	Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. <i>Science Advances</i> , 2021 , 7, eabi7403	14.3	8
87	Hierarchically Porous Silica Membrane as Separator for High-Performance Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , e2107957	24	8
86	Polyionic Resin Supported Pd/Fe2O3Nanohybrids for Catalytic Hydrodehalogenation: Improved and Versatile Remediation for Toxic Pollutants. <i>Industrial & Discourse of the Manager of the State of the Sta</i>	3.9	8
85	X-ray standing wave enhanced scattering from mesoporous silica thin films. <i>Applied Physics Letters</i> , 2017 , 110, 041603	3.4	7
84	A "teardown" method to create large mesotunnels on the pore walls of ordered mesoporous silica. Journal of Colloid and Interface Science, 2008, 328, 338-43	9.3	7
83	Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. <i>Small</i> , 2021 , e2102887	11	7
82	Surface-Confined Winding Assembly of Mesoporous Nanorods. <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	7
81	Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing. <i>ACS Nano</i> , 2021 , 15, 7713-7721	16.7	7
80	Recent advances in TiO2-based catalysts for N2 reduction reaction. <i>SusMat</i> , 2021 , 1, 174-193		7
79	Template synthesis of metal tungsten nanowire bundles with high field electron emission performance. <i>RSC Advances</i> , 2016 , 6, 62668-62674	3.7	6
78	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. <i>Angewandte Chemie</i> , 2019 , 131, 16010-16015	3.6	6

77	General Synthesis of Ordered Nonsiliceous Mesoporous Materials. ACS Symposium Series, 2008, 2-48	0.4	6
76	Continuous Fixed-Bed Gas-Phase Hydroformylation over PPh3-Modified Mesostructured Cellular Foam-Supported Rh Catalyst. <i>Chinese Journal of Catalysis</i> , 2006 , 27, 1-3	11.3	6
75	Directed growth of multiwalled carbon nanotubes from ordered porous silica structures. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2934-2936		6
74	Supercapacitors: An Interface-Induced Co-Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for High-Performance Supercapacitors (Adv. Funct. Mater. 4/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 651-651	15.6	5
73	Mesoporous Silica Materials: Interfacial Assembly of Mesoporous Silica-Based Optical Heterostructures for Sensing Applications (Adv. Funct. Mater. 9/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070057	15.6	5
72	Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870040	15.6	5
71	Enhanced sequestration of large-sized dissolved organic micropollutants in polymeric membranes incorporated with mesoporous carbon. <i>RSC Advances</i> , 2016 , 6, 81477-81484	3.7	5
70	Mesoporous Materials: Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering (Adv. Mater. 37/2013). <i>Advanced Materials</i> , 2013 , 25, 5128-5128	24	5
69	Mesoporous Nonsilica Materials 2013 , 293-428		5
68	Synthesis of ordered mesostructured polymerBrganosilica composites by the triconstituent co-assembly method. <i>Materials Letters</i> , 2011 , 65, 624-627	3.3	5
67	One-step direct synthesis of mesoporous aluminosilicates Al-SBA-15 with cage-like macropores by using micrometer-sized aluminum balls. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1090-1096		5
66	[Ni3(cit)2(pyz)(H2O)4](H2O)4: A New Three-dimensional Porous Coordination Polymer with a Pillared Layer Structure. <i>Chemistry Letters</i> , 2004 , 33, 1514-1515	1.7	5
65	Soft Template Synthesis of Highly Crystalline Microscale Nanotubules of PbO. <i>Chemistry Letters</i> , 2005 , 34, 1226-1227	1.7	5
64	Making MXenes more energetic in aqueous battery. <i>Matter</i> , 2022 , 5, 8-10	12.7	5
63	An Aqueous Route Synthesis of Transition-Metal-Ions-Doped Quantum Dots by Bimetallic Cluster Building Blocks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16177-16181	16.4	5
62	Artificial Blood Vessel Frameworks from 3D Printing-Based Super-Assembly as In Vitro Models for Early Diagnosis of Intracranial Aneurysms. <i>Chemistry of Materials</i> , 2020 , 32, 3188-3198	9.6	5
61	Synthesis of Ni/NiO@MoO 3Ik Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction. <i>Advanced Energy Materials</i> ,2200001	21.8	5
60	Modular super-assembly of hierarchical superstructures from monomicelle building blocks <i>Science Advances</i> , 2022 , 8, eabo0283	14.3	5

59	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodium-Ion Batteries Operated at -40 IIC <i>Advanced Materials</i> , 2022 , e2202873	24	5
58	Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis. <i>Cell Reports Physical Science</i> , 2020 , 1, 100081	6.1	4
57	Representative Mesoporous Silica Molecular Sieves 2013 , 153-217		4
56	Membrane Surface Nanostructuring with Terminally Anchored Polymer Chains 2013, 85-124		4
55	High-resolution electron microscopy study of mesoporous dichalcogenides and their hydrogen storage properties. <i>Nanotechnology</i> , 2011 , 22, 075702	3.4	4
54	Concern Regarding the Synthesis of Single-Crystalline Nanostructures from the Polymerization of Furfuryl Alcohol. <i>Small</i> , 2007 , 3, 198-200	11	4
53	Kinetics-Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	4
52	Interfacial Assembly of Functional Mesoporous Carbon-Based Materials into Films for Batteries and Electrocatalysis. <i>Advanced Materials Interfaces</i> ,2101998	4.6	4
51	Highly efficient (200) oriented MAPbI3 perovskite solar cells. <i>Chemical Engineering Journal</i> , 2021 , 433, 133845	14.7	4
50	Hierarchy: from nature to artificial. <i>National Science Review</i> , 2020 , 7, 1623	10.8	4
50 49	Hierarchy: from nature to artificial. <i>National Science Review</i> , 2020 , 7, 1623 NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656	10.8	4
	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal		
49	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656	15.6	
49 48	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656 2D mesoporous materials <i>National Science Review</i> , 2022 , 9, nwab108 CoreShell Silicon@Mesoporous TiO2 Heterostructure: Towards Solar-Powered	15.6	4
49 48 47	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656 2D mesoporous materials <i>National Science Review</i> , 2022 , 9, nwab108 CoreBhell Silicon@Mesoporous TiO2 Heterostructure: Towards Solar-Powered Photoelectrochemical Conversion. <i>ChemNanoMat</i> , 2016 , 2, 647-651 Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal	15.6 10.8 3.5	4
49 48 47 46	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656 2D mesoporous materials <i>National Science Review</i> , 2022 , 9, nwab108 CoreBhell Silicon@Mesoporous TiO2 Heterostructure: Towards Solar-Powered Photoelectrochemical Conversion. <i>ChemNanoMat</i> , 2016 , 2, 647-651 Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management. <i>Materials Horizons</i> , 2021 , 8, 1700-1710	15.6 10.8 3.5	4 4
49 48 47 46 45	NIR-II J-Aggregates Labelled Mesoporous Implant for Imaging-Guided Osteosynthesis with Minimal Invasion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100656 2D mesoporous materials <i>National Science Review</i> , 2022 , 9, nwab108 CoreBhell Silicon@Mesoporous TiO2 Heterostructure: Towards Solar-Powered Photoelectrochemical Conversion. <i>ChemNanoMat</i> , 2016 , 2, 647-651 Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management. <i>Materials Horizons</i> , 2021 , 8, 1700-1710 Doped Mesoporous Silica Fibers: A New Laser Material 1999 , 11, 632 Superassembly of Surface-Enriched Ru Nanoclusters from Trapping-Bonding Strategy for Efficient	15.6 10.8 3.5	4 4

41	Application of Ceramic Membranes in the Treatment of Water 2013 , 195-215		3
40	Recycling Mother Liquor to Synthesize Mesoporous SBA-15 Silica. <i>Asian Journal of Chemistry</i> , 2013 , 25, 9627-9631	0.4	3
39	Synthesis of mesoporous carbon frameworks with graphitic walls by secondary hard template method. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 373-376	1.8	3
38	Quasi-Continuously Tuning the Size of Graphene Quantum Dots via an Edge-Etching Mechanism. <i>MRS Advances</i> , 2016 , 1, 1459-1467	0.7	2
37	LiD2 Batteries: Interfacial Super-Assembled Porous CeO2/C Frameworks Featuring Efficient and Sensitive Decomposing Li2O2 for Smart LiD2 Batteries (Adv. Energy Mater. 40/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970157	21.8	2
36	Molecular Scale Modeling of Membrane Water Treatment Processes 2013 , 249-299		2
35	Structural Characterization Methods 2013 , 117-151		2
34	Recent Advances in Ion Exchange Membranes for Desalination Applications 2013 , 125-161		2
33	Functional Zeolitic Framework Membranes for Water Treatment and Desalination 2013, 217-247		2
32	Innentitelbild: Extension of The StBer Method to the Preparation of Monodisperse ResorcinolEormaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. 26/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5894-5894	3.6	2
31	Inside Cover: Extension of The StBer Method to the Preparation of Monodisperse ResorcinolFormaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. Int. Ed. 26/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5774-5774	16.4	2
30	A facile aqueous route tosynthesize highly ordered mesoporous carbons with open pore structures. <i>Studies in Surface Science and Catalysis</i> , 2007 , 1856-1862	1.8	2
29	Active Plasmonics in Kirigami Configurations Toward High-Performance Smart Windows. <i>SSRN Electronic Journal</i> ,	1	2
28	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14097-14105	16.4	2
27	Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. <i>Nano Energy</i> , 2021 , 89, 106348	17.1	2
26	Doped Mesoporous Silica Fibers: A New Laser Material 1999 , 11, 632		2
25	Ordered Mesoporous Materials277-300		2
24	Incorporation of Al3+ ions to promote the stabilization effect of (NH4)2SiF6 treatment on the hydrothermal stability of mesoporous SBA-15 zeolite. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1001-1008	11.3	1

23	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. <i>Angewandte Chemie</i> , 2014 , 126, 2932-2936	3.6	1
22	Synthesis Approach of Mesoporous Molecular Sieves 2013 , 5-54		1
21	Mechanisms for Formation of Mesoporous Materials 2013 , 55-116		1
20	Doping in Mesoporous Molecular Sieves 2013 , 219-242		1
19	Mesoporous Materials for Water Treatment 2013 , 67-84		1
18	Monodispersed Fullerene Derivatives Introduced into the Channels of Mesoporous Silica via Chemical Bond Interactions. <i>Bulletin of the Chemical Society of Japan</i> , 2007 , 80, 994-998	5.1	1
17	Ordered mesoporous polymers and polymer-silica anocomposites. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 1721-1733	1.8	1
16	(NH4)2ZrGe3O9: a new microporous zirconogermanate. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2003 , 59, i29-31		1
15	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. <i>ACS Central Science</i> , 2021 , 7, 318-326	16.8	1
14	Manganese Oxide Nanoclusters for Skin Photoprotection ACS Applied Bio Materials, 2019 , 2, 3974-3987	24.1	O
13	Highly stable hybrid single-micelle: a universal nanocarrier for hydrophobic bioimaging agents. <i>Nano Research</i> ,1	10	Ο
12	Synthesis of a durable and efficient superhydrophobic copper mesh coated by organosilica nano/microstructures for separating oil from water. <i>Surfaces and Interfaces</i> , 2021 , 27, 101464	4.1	O
11	Quantized doping of CdS quantum dots with twelve gold atoms. <i>Chemical Communications</i> , 2021 , 57, 6448-6451	5.8	0
10	Speed up the absorption of viscous crude oil spill by Joule-heated sorbent design. <i>Science China Chemistry</i> , 2017 , 60, 1113-1114	7.9	
9	REktitelbild: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. 29/2015). <i>Angewandte Chemie</i> , 2015 , 127, 8686-8686	3.6	
8	Morphology Control 2013 , 243-292		
7	Applications of Mesoporous Molecular Sieves 2013 , 465-511		
6	Target Areas for Nanotechnology Development for Water Treatment and Desalination 2013, 1-6		

LIST OF PUBLICATIONS

- 5 Destruction of Organics in Water via Iron Nanoparticles **2013**, 7-32
- Photocatalysis at Nanostructured Titania for Sensing Applications **2013**, 33-65
- 3 Conclusions: Some Potential Future Nanotechnologies for Water Treatment **2013**, 301-311
- Organic Group Functionalized Mesoporous Silicas **2013**, 429-463
- Improved Synthesis of SBA-15 Mesoporous Silica Fitting for Industrial Production. *Chinese Journal of Catalysis*, **2013**, 33, 1360-1366

11.3