Akihiro Ikeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1648457/publications.pdf

Version: 2024-02-01

38	1,417	18	34
papers	citations	h-index	g-index
39	39	39	2110 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Scientific Reports, 2022, 12, 756.	1.6	7
2	Aging of the sensory systems: hearing and vision disorders. , 2021, , 297-321.		2
3	The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells, 2021, 10, 1593.	1.8	23
4	Retinopathy of prematurity shows alterations in Vegfa 164 isoform expression. Pediatric Research, $2021, \dots$	1.1	2
5	Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in <i>skt</i> Mice. Genetics, 2020, 214, 121-134.	1.2	18
6	Modulation of <i>Tmem135</i> Leads to Retinal Pigmented Epithelium Pathologies in Mice., 2020, 61, 16.		7
7	Metabolic alterations caused by the mutation and overexpression of the <i>Tmem135</i> gene. Experimental Biology and Medicine, 2020, 245, 1571-1583.	1.1	7
8	Long-term evaluation of retinal morphology and function in a mouse model of oxygen-induced retinopathy. Molecular Vision, 2020, 26, 257-276.	1.1	10
9	The effect of Tmem135 overexpression on the mouse heart. PLoS ONE, 2018, 13, e0201986.	1.1	16
10	Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics, 2017, 7, 2078-2091.	4.6	31
11	Syndactyly in a novel <i>Fras1</i> ^{<i>rdf</i>} mutant results from interruption of signals for interdigital apoptosis. Developmental Dynamics, 2016, 245, 497-507.	0.8	11
12	Mouse Tmem 135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016 , 5 , .	2.8	38
13	A Mutation in < i > Syne2 < /i > Causes Early Retinal Defects in Photoreceptors, Secondary Neurons, and Mü ller Glia. , 2015, 56, 3776.		19
14	Genetic basis of age-dependent synaptic abnormalities in the retina. Mammalian Genome, 2015, 26, 21-32.	1.0	9
15	Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nature Communications, 2015, 6, 6855.	5.8	80
16	The Significance of the Discordant Occurrence of Lens Tumors in Humans versus Other Species. Ophthalmology, 2015, 122, 1765-1770.	2.5	7
17	Serum response factor: positive and negative regulation of an epithelial gene expression network in the destrin mutant cornea. Physiological Genomics, 2014, 46, 277-289.	1.0	4
18	Genetic modification of corneal neovascularization in Dstn corn1 mice. Mammalian Genome, 2013, 24, 349-357.	1.0	3

#	Article	IF	CITATIONS
19	An Allele of Microtubule-Associated Protein 1A (<i>Mtap1a</i>) Reduces Photoreceptor Degeneration in <i>Tulp1</i> and <i>Tub</i> Mutant Mice., 2012, 53, 1663.		19
20	A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mammalian Genome, 2012, 23, 454-466.	1.0	37
21	Differences in corneal phenotypes between destrin mutants are due to allelic difference and modified by genetic background. Molecular Vision, 2012, 18, 606-16.	1.1	8
22	Serum response factor is essential for the proper development of skin epithelium. Mammalian Genome, 2010, 21, 64-76.	1.0	23
23	Tyrosinase Is the Modifier of Retinoschisis in Mice. Genetics, 2010, 186, 1337-1344.	1.2	12
24	A Pathogenic Relationship Between a Regulator of the Actin Cytoskeleton and Serum Response Factor. Genetics, 2010, 186, 147-157.	1.2	15
25	Mutation in Archain 1, a Subunit of COPI Coatomer Complex, Causes Diluted Coat Color and Purkinje Cell Degeneration. PLoS Genetics, 2010, 6, e1000956.	1.5	39
26	Mapping of genetic modifiers of Nr2e3 rd7/rd7 that suppress retinal degeneration and restore blue cone cells to normal quantity. Mammalian Genome, 2008, 19, 145-154.	1.0	30
27	Effect of destrin mutations on the gene expression profile in vivo. Physiological Genomics, 2008, 34, 9-21.	1.0	32
28	Defects in Actin Dynamics Lead to an Autoinflammatory Condition through the Upregulation of CXCL5. PLoS ONE, 2008, 3, e2701.	1.1	13
29	Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Molecular and Cellular Neurosciences, 2007, 35, 161-170.	1.0	49
30	Reduced synaptic vesicle density and aberrant synaptic localization caused by a splice site mutation in the Rs1h gene. Visual Neuroscience, 2006, 23, 887-898.	0.5	20
31	The <i>nob2 </i> mouse, a null mutation in <i>Cacna1f </i> : Anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Visual Neuroscience, 2006, 23, 11-24.	0.5	194
32	Spontaneous Corneal Hem- and Lymphangiogenesis in Mice with Destrin-Mutation Depend on VEGFR3 Signaling. American Journal of Pathology, 2005, 166, 1367-1377.	1.9	51
33	Towards Understanding the Function of the Tubby Gene Family in the Retina. Advances in Experimental Medicine and Biology, 2003, 533, 309-314.	0.8	3
34	Genetic modifiers of vision and hearing. Human Molecular Genetics, 2002, 11, 1195-1206.	1.4	48
35	Genetic Modification of Retinal Degeneration in Tubby Mice. Experimental Eye Research, 2002, 74, 455-461.	1.2	28
36	Microtubule-associated protein 1A is a modifier of tubby hearing (moth1). Nature Genetics, 2002, 30, 401-405.	9.4	92

AKIHIRO IKEDA

#	Article	IF	CITATIONS
37	Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nature Genetics, 2002, 31, 74-78.	9.4	358
38	Molecular Characterization of a Novel Tubby Gene Family Member, TULP3, in Mouse and Humans. Genomics, 1998, 54, 215-220.	1.3	52