Suraj B Sable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1648347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuberculosis Vaccine Development: Progress in Clinical Evaluation. Clinical Microbiology Reviews, 2019, 33, .	13.6	70
2	Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Scientific Reports, 2016, 6, 25837.	3.3	16
3	Attrition of T-Cell Functions and Simultaneous Upregulation of Inhibitory Markers Correspond with the Waning of BCG-Induced Protection against Tuberculosis in Mice. PLoS ONE, 2014, 9, e113951.	2.5	36
4	O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection. PLoS Pathogens, 2013, 9, e1003705.	4.7	30
5	Programmed Death 1 Lives Up to Its Reputation in Active Tuberculosis. Journal of Infectious Diseases, 2013, 208, 541-543.	4.0	8
6	Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine, 2011, 29, 2626-2636.	3.8	85
7	Mycobacterium tuberculosis components stimulate production of the antimicrobial peptide hepcidin. Tuberculosis, 2011, 91, 314-321.	1.9	48
8	Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination. PLoS ONE, 2011, 6, e22718.	2.5	28
9	Nanobead-based interventions for the treatment and prevention of tuberculosis. Nature Reviews Microbiology, 2010, 8, 827-834.	28.6	127
10	Role of Hepcidin in the Innate Immune Response to <i>Mycobacterium tuberculosis</i> . FASEB Journal, 2008, 22, 556-556.	0.5	2
11	Tuberculosis subunit vaccine development: Impact of physicochemical properties of mycobacterial test antigens. Vaccine, 2007, 25, 1553-1566.	3.8	18
12	An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunology and Cell Biology, 2007, 85, 160-168.	2.3	57
13	Tuberculosis subunit vaccine design: The conflict of antigenicity and immunogenicity. Clinical Immunology, 2007, 122, 239-251.	3.2	37
14	Supplementation with RD antigens enhances the protective efficacy of BCG in tuberculous mice. Clinical Immunology, 2007, 125, 173-183.	3.2	26
15	Lung and blood mononuclear cell responses of tuberculosis patients to mycobacterial proteins. European Respiratory Journal, 2006, 29, 337-346.	6.7	20
16	Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunology and Medical Microbiology, 2005, 45, 87-93.	2.7	48
17	Human immune recognition-based multicomponent subunit vaccines against tuberculosis. European Respiratory Journal, 2005, 25, 902-910.	6.7	19
18	Peripheral Blood and Pleural Fluid Mononuclear Cell Responses to Low-Molecular-Mass Secretory Polypeptides of <i>Mycobacterium tuberculosis</i> in Human Models of Immunity to Tuberculosis. Infection and Immunity, 2005, 73, 3547-3558.	2.2	32

#	Article	IF	CITATIONS
19	Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine, 2005, 23, 4175-4184.	3.8	38
20	Immunodominance of low molecular weight secretory polypeptides of Mycobacterium tuberculosis to induce cytotoxic T-lymphocyte response. Vaccine, 2005, 23, 4947-4954.	3.8	9