Shandelle M Henson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1648141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can noise induce chaos?. Oikos, 2003, 102, 329-339.	1.2	226
2	ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION. Ecological Monographs, 2001, 71, 277-303.	2.4	184
3	Some Discrete Competition Models and the Competitive Exclusion Principleâ€. Journal of Difference Equations and Applications, 2004, 10, 1139-1151.	0.7	151
4	The effect of periodic habitat fluctuations on a nonlinear insect population model. Journal of Mathematical Biology, 1997, 36, 201-226.	0.8	86
5	Global Dynamics of Some Periodically Forced, Monotone Difference Equations. Journal of Difference Equations and Applications, 2001, 7, 859-872.	0.7	84
6	A Periodically Forced Beverton-Holt Equation. Journal of Difference Equations and Applications, 2002, 8, 1119-1120.	0.7	81
7	Resonant Population Cycles in Temporally Fluctuating Habitats. Bulletin of Mathematical Biology, 1998, 60, 247-273.	0.9	80
8	Chaos and population control of insect outbreaks. Ecology Letters, 2001, 4, 229-235.	3.0	57
9	Park's Tribolium competition experiments: a non-equilibrium species coexistence hypothesis. Journal of Animal Ecology, 2003, 72, 703-712.	1.3	55
10	Nonlinear Stochastic Population Dynamics: The Flour Beetle Tribolium as an Effective Tool of Discovery. Advances in Ecological Research, 2005, , 101-141.	1.4	49
11	Multiple Attractors, Saddles, and Population Dynamics in Periodic Habitats. Bulletin of Mathematical Biology, 1999, 61, 1121-1149.	0.9	45
12	Hierarchical models of intra-specific competition: scramble versus contest. Journal of Mathematical Biology, 1996, 34, 755-772.	0.8	43
13	A chaotic attractor in ecology: theory and experimental data. Chaos, Solitons and Fractals, 2001, 12, 219-234.	2.5	36
14	Anatomy of a chaotic attractor: Subtle model-predicted patterns revealed in population data. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 408-413.	3.3	32
15	Foraging-Related Activity of Bald Eagles at a Washington Seabird Colony and Seal Rookery. Journal of Raptor Research, 2010, 44, 19-29.	0.2	30
16	Coping behaviour as an adaptation to stress: post-disturbance preening in colonial seabirds. Journal of Biological Dynamics, 2012, 6, 17-37.	0.8	29
17	Experimental support of the scaling rule for demographic stochasticity. Ecology Letters, 2006, 9, 537-547.	3.0	26
18	PREDICTING DYNAMICS OF AGGREGATE LOAFING BEHAVIOR IN GLAUCOUS-WINGED GULLS (LARUS) TJ ETQq0	0 0 rgBT /(Overlock 10 T

2

SHANDELLE M HENSON

#	Article	IF	CITATIONS
19	Egg cannibalism in a gull colony increases with sea surface temperature. Condor, 2014, 116, 62-73.	0.7	25
20	Predicting numbers of hauled-out harbour seals: a mathematical model. Journal of Applied Ecology, 2005, 42, 108-117.	1.9	24
21	Socially Induced Synchronization of Every-Other-Day Egg Laying in a Seabird Colony. Auk, 2010, 127, 571-580.	0.7	24
22	Explaining and predicting patterns in stochastic population systems. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1549-1553.	1.2	21
23	Modeling territory attendance and preening behavior in a seabird colony as functions of environmental conditions. Journal of Biological Dynamics, 2007, 1, 95-107.	0.8	20
24	The effect of periodicity in maps. Journal of Difference Equations and Applications, 1999, 5, 31-56.	0.7	19
25	Socially induced ovulation synchrony and its effect on seabird population dynamics. Journal of Biological Dynamics, 2011, 5, 495-516.	0.8	17
26	Predicting the dynamics of animal behaviour in field populations. Animal Behaviour, 2007, 74, 103-110.	0.8	15
27	AN EVOLUTIONARY GAMEâ€THEORETIC MODEL OF CANNIBALISM. Natural Resource Modelling, 2015, 28, 497-521.	0.8	15
28	Existence and stability of nontrivial periodic solutions of periodically forced discrete dynamical Systems. Journal of Difference Equations and Applications, 1996, 2, 315-331.	0.7	14
29	Identifying Environmental Determinants of Diurnal Distribution in Marine Birds and Mammals. Bulletin of Mathematical Biology, 2006, 68, 467-482.	0.9	13
30	Leslie matrix models as "stroboscopic snapshots" of McKendrick PDE models. Journal of Mathematical Biology, 1998, 37, 309-328.	0.8	12
31	HABITAT PATCH OCCUPANCY DYNAMICS OF GLAUCOUSâ€WINGED GULLS (LARUS GLAUCESCENS) II: A CONTINUOUSâ€TIME MODEL. Natural Resource Modelling, 2005, 18, 469-499.	0.8	12
32	A matter of maturity: To delay or not to delay? Continuousâ€ŧime compartmental models of structured populations in the literature 2000–2016. Natural Resource Modelling, 2018, 31, .	0.8	12
33	A continuous, age-structured insect population model. Journal of Mathematical Biology, 1999, 39, 217-243.	0.8	10
34	Mating Patterns and Breeding Success In Gulls of the <i>Larus glaucescens-occidentalis</i> Complex, Protection Island, Washington, USA. Northwestern Naturalist, 2013, 94, 67-75.	0.5	9
35	Modeling the daily activities of breeding colonial seabirds: Dynamic occupancy patterns in multiple habitat patches. Mathematical Biosciences and Engineering, 2008, 5, 831-842.	1.0	9
36	Species competition: uncertainty on a double invariant loop. Journal of Difference Equations and Applications, 2005, 11, 311-325.	0.7	8

Shandelle M Henson

#	Article	IF	CITATIONS
37	PREDICTING GULL/HUMAN CONFLICTS WITH MATHEMATICAL MODELS: A TOOL FOR MANAGEMENT. Natural Resource Modelling, 2009, 22, 544-563.	0.8	8
38	Equal reproductive success of phenotypes in the <i>Larus glaucescens–occidentalis</i> complex. Journal of Avian Biology, 2014, 45, 410-416.	0.6	8
39	Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population. Journal of Mathematical Biology, 2018, 77, 1689-1720.	0.8	8
40	Predator–prey dynamics of bald eagles and glaucousâ€winged gulls at Protection Island, Washington, USA. Ecology and Evolution, 2019, 9, 3850-3867.	0.8	8
41	ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION. , 2001, 71, 277.		6
42	HABITAT PATCH OCCUPANCY DYNAMICS OF GLAUCOUSâ€WINGED GULLS (LARUS GLAUCESCENS) I: A DISCRETEâ€TIME MODEL. Natural Resource Modelling, 2005, 18, 441-468.	0.8	5
43	Hierarchical models of intra-specific competition: scramble versus contest. Journal of Mathematical Biology, 1996, 34, 755-772.	0.8	5
44	Mathematical modeling of appendicular bone growth in glaucousâ€winged gulls. Journal of Morphology, 2009, 270, 70-82.	0.6	4
45	Every-Other-Day Clutch-Initiation Synchrony In Ring-Billed Gulls (<i>Larus Delawarensis</i>). Wilson Journal of Ornithology, 2016, 128, 760-765.	0.1	4
46	Copulation Call Coordinates Timing of Head-Tossing and Mounting Behaviors In Neighboring Glaucous-Winged Gulls (<i>Larus glaucescens</i>). Wilson Journal of Ornithology, 2017, 129, 560-567.	0.1	4
47	Temporal and environmental effects on the behavior of Flightless Cormorants. Wilson Journal of Ornithology, 2013, 125, 790-799.	0.1	3
48	A note on the onset of synchrony in avian ovulation cycles. Journal of Difference Equations and Applications, 2014, 20, 664-668.	0.7	3
49	Parallel effects of temperature on the male cricket calling song, phonotaxis of the female and the auditory responses of the <scp>L3</scp> neurone. Physiological Entomology, 2015, 40, 113-122.	0.6	3
50	Daily and Annual Habitat Use and Habitat-To-Habitat Movement By Glaucous-Winged Gulls At Protection Island, Washington. Northwestern Naturalist, 2017, 98, 180-189.	0.5	3
51	INTRODUCTION TO SPECIAL ISSUE ON ECO-EVOLUTIONARY DYNAMICS. Natural Resource Modelling, 2015, 28, 377-379.	0.8	2
52	Oviposition behavior in Glaucous-winged Gulls (<i>Larus glaucescens</i>). Wilson Journal of Ornithology, 2015, 127, 486-493.	0.1	2
53	Courtship and copulation in Glaucous-winged Gulls, <i>Larus glaucescens</i> , and the influence of environmental variables. Wilson Journal of Ornithology, 2018, 130, 270-285.	0.1	2
54	Every-other-day clutch-initiation synchrony as an adaptive response to egg cannibalism in Glaucous-winged Gulls (Larus glaucescens). Wilson Journal of Ornithology, 2021, 132, .	0.1	2

SHANDELLE M HENSON

#	Article	IF	CITATIONS
55	How do gulls synchronize every-other-day egg laying?. Wilson Journal of Ornithology, 2021, 133, .	0.1	2
56	Geometric Transient Solutions of Autonomous Scalar Maps. Journal of Difference Equations and Applications, 2002, 8, 61-73.	0.7	1
57	A METHOD FOR PREDICTING HARBOR SEAL (<i>PHOCA VITULINA</i>) HAULOUT AND MONITORING LONGâ€TERM POPULATION TRENDS WITHOUT TELEMETRY. Natural Resource Modelling, 2013, 26, 605-627.	0.8	1
58	A note on synchronous egg laying in a seabird behaviour model. Journal of Difference Equations and Applications, 2018, 24, 1953-1966.	0.7	1
59	Cannibalism and synchrony in seabird eggâ€laying behavior. Natural Resource Modelling, 2021, 34, e12325.	0.8	1
60	Egg cannibalism as a foraging tactic by less fit Glaucous-winged Gulls (Larus glaucescens). Wilson Journal of Ornithology, 2022, 133, .	0.1	1
61	Egg Mass in Glaucous-Winged Gulls (Larus Glaucescens) as a Function of Length and Width. Northwestern Naturalist, 2013, 94, 147-150.	0.5	0
62	New opportunities for publishing in Natural Resource Modeling. Natural Resource Modelling, 2017, 30, e12136.	0.8	0
63	Dedication to Catherine A. Roberts. Natural Resource Modelling, 2018, 31, e12161.	0.8	0
64	Predicting Dynamics of Aggregate Loafing Behavior in Glaucous-Winged Gulls (Larus Glaucescens) at a Washington Colony. Auk, 2004, 121, 380-390.	0.7	0