Ryan J Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164789/publications.pdf Version: 2024-02-01

		17429	8618
309	25,721	63	146
papers	citations	h-index	g-index
317	317	317	33521
all docs	docs citations	times ranked	citing authors

Ργλη Ι Shi Livan

#	Article	IF	CITATIONS
1	Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 2016, 352, 189-196.	6.0	3,421
2	Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors. JAMA Oncology, 2018, 4, 1721.	3.4	1,625
3	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	13.5	1,260
4	Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. Journal of the American College of Cardiology, 2018, 71, 1755-1764.	1.2	997
5	<i>EGFR</i> Mutations and <i>ALK</i> Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non–Small Cell Lung Cancer: A Retrospective Analysis. Clinical Cancer Research, 2016, 22, 4585-4593.	3.2	977
6	A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.	13.5	892
7	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	3.2	832
8	Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 2017, 8, 1136.	5.8	686
9	Ipilimumab Therapy in Patients With Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncology, 2016, 2, 234.	3.4	534
10	Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nature Medicine, 2018, 24, 1545-1549.	15.2	473
11	Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunology Research, 2016, 4, 959-967.	1.6	428
12	MAP Kinase Pathway Alterations in <i>BRAF</i> -Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discovery, 2014, 4, 61-68.	7.7	419
13	Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nature Communications, 2016, 7, 10582.	5.8	412
14	Ipilimumab-Induced Hypophysitis: A Detailed Longitudinal Analysis in a Large Cohort of Patients With Metastatic Melanoma. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4078-4085.	1.8	376
15	Clusters of circulating tumor cells traverse capillary-sized vessels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4947-4952.	3.3	364
16	Highâ€dose glucocorticoids for the treatment of ipilimumabâ€induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer, 2018, 124, 3706-3714.	2.0	340
17	Resistance to BRAF-targeted therapy in melanoma. European Journal of Cancer, 2013, 49, 1297-1304.	1.3	311
18	Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncology, The, 2016, 17, 943-955.	5.1	293

#	Article	IF	CITATIONS
19	Clinical outcomes in metastatic uveal melanoma treated with PDâ€I and PDâ€L1 antibodies. Cancer, 2016, 122, 3344-3353.	2.0	288
20	First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discovery, 2018, 8, 184-195.	7.7	283
21	Association Between Immune Checkpoint Inhibitors With Cardiovascular Events and Atherosclerotic Plaque. Circulation, 2020, 142, 2299-2311.	1.6	282
22	Immune checkpoint inhibitors in challenging populations. Cancer, 2017, 123, 1904-1911.	2.0	266
23	Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. Cell, 2020, 182, 655-671.e22.	13.5	259
24	The efficacy of antiâ€PDâ€1 agents in acral and mucosal melanoma. Cancer, 2016, 122, 3354-3362.	2.0	236
25	PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nature Immunology, 2019, 20, 1231-1243.	7.0	217
26	Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. European Heart Journal, 2020, 41, 1733-1743.	1.0	212
27	Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 2021, 184, 6119-6137.e26.	13.5	201
28	Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer, 2014, 120, 1695-1701.	2.0	195
29	The Incidence, Causes, and Risk Factors of Acute Kidney Injury in Patients Receiving Immune Checkpoint Inhibitors. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1692-1700.	2.2	193
30	Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nature Medicine, 2019, 25, 929-935.	15.2	188
31	Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. Journal of the National Cancer Institute, 2016, 108, djv310.	3.0	182
32	Global Longitudinal Strain and Cardiac Events in Patients With Immune Checkpoint Inhibitor-Related Myocarditis. Journal of the American College of Cardiology, 2020, 75, 467-478.	1.2	179
33	Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncology, The, 2019, 20, e378-e389.	5.1	155
34	HIV/AIDS: Epidemiology, Pathophysiology, and Treatment of Kaposi Sarcoma–Associated Herpesvirus Disease: Kaposi Sarcoma, Primary Effusion Lymphoma, and Multicentric Castleman Disease. Clinical Infectious Diseases, 2008, 47, 1209-1215.	2.9	149
35	PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature, 2017, 550, 133-136.	13.7	146
36	Impact of NRAS Mutations for Patients with Advanced Melanoma Treated with Immune Therapies. Cancer Immunology Research, 2015, 3, 288-295.	1.6	145

#	Article	IF	CITATIONS
37	Impact of Age on Outcomes with Immunotherapy for Patients with Melanoma. Oncologist, 2017, 22, 963-971.	1.9	145
38	Phase I Dose-Escalation and -Expansion Study of the BRAF Inhibitor Encorafenib (LGX818) in Metastatic <i>BRAF</i> -Mutant Melanoma. Clinical Cancer Research, 2017, 23, 5339-5348.	3.2	142
39	Major Adverse Cardiovascular Events and the Timing and Dose of Corticosteroids in Immune Checkpoint Inhibitor–Associated Myocarditis. Circulation, 2020, 141, 2031-2034.	1.6	142
40	Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy. Seminars in Oncology, 2015, 42, 601-616.	0.8	139
41	Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance. Cancer Discovery, 2016, 6, 382-399.	7.7	139
42	Severe Neurological Toxicity of Immune Checkpoint Inhibitors: Growing Spectrum. Annals of Neurology, 2020, 87, 659-669.	2.8	137
43	Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2467-2472.	3.3	131
44	Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clinical Cancer Research, 2015, 21, 2289-2296.	3.2	128
45	Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. , 2020, 8, e000398.		125
46	Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies. Nature Reviews Drug Discovery, 2022, 21, 495-508.	21.5	120
47	Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM) Journal of Clinical Oncology, 2013, 31, 9010-9010.	0.8	118
48	Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. European Journal of Endocrinology, 2019, 181, 211-219.	1.9	116
49	Correlation of NRAS Mutations With Clinical Response to High-dose IL-2 in Patients With Advanced Melanoma. Journal of Immunotherapy, 2012, 35, 66-72.	1.2	111
50	Chronic Immune-Related Adverse Events Following Adjuvant Anti–PD-1 Therapy for High-risk Resected Melanoma. JAMA Oncology, 2021, 7, 744.	3.4	110
51	Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology, 2019, 93, e1093-e1103.	1.5	107
52	Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCl Insight, 2018, 3, .	2.3	107
53	BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncolmmunology, 2013, 2, e26615.	2.1	97
54	Myocardial T1 and T2 Mapping by Magnetic Resonance in PatientsÂWithÂlmmune Checkpoint Inhibitor–Associated Myocarditis. Journal of the American College of Cardiology, 2021, 77, 1503-1516.	1.2	97

Ryan J Sullivan

#	Article	IF	CITATIONS
55	Isolation and Molecular Characterization of Circulating Melanoma Cells. Cell Reports, 2014, 7, 645-653.	2.9	91
56	Myocarditis Associated with Immune Checkpoint Inhibitors: An Expert Consensus on Data Gaps and a Call to Action. Oncologist, 2018, 23, 874-878.	1.9	89
57	Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clinical Cancer Research, 2017, 23, 623-629.	3.2	87
58	Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. , 2021, 9, e002890.		87
59	Immune Checkpoint Inhibitor Cancer Therapy: Spectrum of Imaging Findings. Radiographics, 2017, 37, 2132-2144.	1.4	87
60	Mechanisms of Resistance to Immune Checkpoint Blockade. American Journal of Clinical Dermatology, 2019, 20, 41-54.	3.3	83
61	Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nature Medicine, 2020, 26, 1280-1284.	15.2	83
62	Coâ€ŧargeting <scp>BET</scp> and <scp>MEK</scp> as salvage therapy for <scp>MAPK</scp> and checkpoint inhibitorâ€ŧesistant melanoma. EMBO Molecular Medicine, 2018, 10, .	3.3	79
63	Immunogenicity and Reactogenicity of SARS-CoV-2 Vaccines in Patients With Cancer: The CANVAX Cohort Study. Journal of Clinical Oncology, 2022, 40, 12-23.	0.8	75
64	A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of <i>BRAF</i> -mutated Melanoma to MAPK Inhibitors. Clinical Cancer Research, 2019, 25, 6852-6867.	3.2	74
65	Immune checkpoint inhibitor toxicities: systems-based approaches to improve patient care and research. Lancet Oncology, The, 2020, 21, e398-e404.	5.1	74
66	Early Use of High-Dose Glucocorticoid for the Management of irAE Is Associated with Poorer Survival in Patients with Advanced Melanoma Treated with Anti–PD-1 Monotherapy. Clinical Cancer Research, 2021, 27, 5993-6000.	3.2	70
67	Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study. European Journal of Cancer, 2018, 91, 116-124.	1.3	69
68	Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 2015, 1, 662.	3.4	68
69	Evolution of delayed resistance to immunotherapy in a melanoma responder. Nature Medicine, 2021, 27, 985-992.	15.2	67
70	Ipilimumab plus nivolumab for patients with metastatic uveal melanoma: a multicenter, retrospective study. , 2020, 8, e000331.		66
71	Budesonide treatment for microscopic colitis from immune checkpoint inhibitors. , 2019, 7, 292.		63
72	Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nature Medicine, 2016, 22, 1056-1061.	15.2	62

#	Article	IF	CITATIONS
73	A Serum Protein Signature Associated with Outcome after Anti–PD-1 Therapy in Metastatic Melanoma. Cancer Immunology Research, 2018, 6, 79-86.	1.6	61
74	A Phase I Study of LY3009120, a Pan-RAF Inhibitor, in Patients with Advanced or Metastatic Cancer. Molecular Cancer Therapeutics, 2020, 19, 460-467.	1.9	60
75	Pseudoprogression in cancer immunotherapy: Rates, time course and patient outcomes Journal of Clinical Oncology, 2016, 34, 6580-6580.	0.8	60
76	An update on the Society for Immunotherapy of Cancer consensus statement on tumor immunotherapy for the treatment of cutaneous melanoma: version 2.0. , 2018, 6, 44.		59
77	Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. , 2019, 7, 53.		59
78	Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget, 2015, 6, 40535-40556.	0.8	59
79	Musculoskeletal rheumatic complications of immune checkpoint inhibitor therapy: A single center experience. Seminars in Arthritis and Rheumatism, 2019, 48, 1127-1132.	1.6	56
80	Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncolmmunology, 2016, 5, e1136044.	2.1	55
81	The Intersection of Immune-Directed and Molecularly Targeted Therapy in Advanced Melanoma: Where We Have Been, Are, and Will Be. Clinical Cancer Research, 2013, 19, 5283-5291.	3.2	54
82	Clinical Cancer Advances 2021: ASCO's Report on Progress Against Cancer. Journal of Clinical Oncology, 2021, 39, 1165-1184.	0.8	54
83	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	3.2	53
84	Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors Journal of Clinical Oncology, 2018, 36, 3013-3013.	0.8	51
85	Liver biopsy findings in patients on immune checkpoint inhibitors. Modern Pathology, 2021, 34, 426-437.	2.9	48
86	Primary genitourinary melanoma: Epidemiology and disease-specific survival in a large population-based cohort. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 166.e7-166.e14.	0.8	47
87	Incidence and Clinical Features of Immune-Related Acute Kidney Injury in Patients Receiving Programmed Cell Death Ligand-1 Inhibitors. Kidney International Reports, 2020, 5, 1700-1705.	0.4	47
88	BRAF in Melanoma: Pathogenesis, Diagnosis, Inhibition, and Resistance. Journal of Skin Cancer, 2011, 2011, 1-8.	0.5	46
89	Clinical impact of COVID-19 on patients with cancer treated with immune checkpoint inhibition. , 2021, 9, e001931.		46
90	<i>FGFR2</i> Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discovery, 2021, 11, 2488-2505.	7.7	46

#	Article	IF	CITATIONS
91	COVID-19 and immune checkpoint inhibitors: initial considerations. , 2020, 8, e000933.		45
92	Atezolizumab (A) + cobimetinib (C) + vemurafenib (V) in BRAF ^{V600} -mutant metastatic melanoma (mel): Updated safety and clinical activity Journal of Clinical Oncology, 2017, 35, 3063-3063.	0.8	45
93	Identifying a Clinically Applicable Mutational Burden Threshold as a Potential Biomarker of Response to Immune Checkpoint Therapy in Solid Tumors. JCO Precision Oncology, 2017, 2017, 1-13.	1.5	44
94	Clinical characterization of colitis arising from anti-PD-1 based therapy. OncoImmunology, 2019, 8, e1524695.	2.1	44
95	Tolerance and efficacy of BRAF plus MEK inhibition in patients with melanoma who previously have received programmed cell death protein 1â€based therapy. Cancer, 2019, 125, 884-891.	2.0	43
96	Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics. PLoS ONE, 2014, 9, e101286.	1.1	42
97	Frontline Therapy for <i>BRAF</i> -Mutated Metastatic Melanoma: How Do You Choose, and Is There One Correct Answer?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 564-571.	1.8	42
98	Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib Combination Treatment for BRAF Inhibitor–Refractory Metastatic Melanoma. JAMA Oncology, 2016, 2, 1056.	3.4	41
99	Mucosal inflammation predicts response to systemic steroids in immune checkpoint inhibitor colitis. , 2020, 8, e000451.		39
100	A phase Ib/II study of BRAF inhibitor (BRAFi) encorafenib (ENCO) plus MEK inhibitor (MEKi) binimetinib (BINI) in cutaneous melanoma patients naive to BRAFi treatment Journal of Clinical Oncology, 2015, 33, 9007-9007.	0.8	39
101	A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36Î3, for intratumoral (iTu) injection alone and in combination with durvalumab Journal of Clinical Oncology, 2020, 38, 3092-3092.	0.8	39
102	Anti-PD-1 therapies—a new first-line option in advanced melanoma. Nature Reviews Clinical Oncology, 2015, 12, 625-626.	12.5	38
103	Keeping Expectations in Check With Immune Checkpoint Inhibitors. Journal of Clinical Oncology, 2018, 36, 1654-1657.	0.8	38
104	Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunology, Immunotherapy, 2019, 68, 897-905.	2.0	38
105	Decreased Absolute Lymphocyte Count and Increased Neutrophil/Lymphocyte Ratio With Immune Checkpoint Inhibitor–Associated Myocarditis. Journal of the American Heart Association, 2020, 9, e018306.	1.6	38
106	Achievements and Challenges of Molecular Targeted Therapy in Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , 177-186.	1.8	37
107	A retrospective analysis of High-Dose Interleukin-2 (HD IL-2) following Ipilimumab in metastatic melanoma. , 2016, 4, 52.		37
108	Plasma-derived extracellular vesicle analysis and deconvolution enable prediction and tracking of melanoma checkpoint blockade outcome. Science Advances, 2020, 6, .	4.7	37

Ryan J Sullivan

#	Article	IF	CITATIONS
109	Vitamin D intake is associated with decreased risk of immune checkpoint inhibitorâ€induced colitis. Cancer, 2020, 126, 3758-3767.	2.0	37
110	Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clinical Cancer Research, 2022, 28, 4618-4628.	3.2	37
111	Upfront Surgical Resection of Melanoma Brain Metastases Provides a Bridge Toward Immunotherapy-Mediated Systemic Control. Oncologist, 2019, 24, 671-679.	1.9	36
112	Electrocardiographic features of immune checkpoint inhibitor associated myocarditis. , 2021, 9, e002007.		36
113	Targeted Therapy for Kaposi Sarcoma. BioDrugs, 2009, 23, 69-75.	2.2	35
114	Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nature Communications, 2021, 12, 5954.	5.8	35
115	Immune checkpoint inhibitors for cancer and venous thromboembolic events. European Journal of Cancer, 2021, 158, 99-110.	1.3	35
116	Immune checkpoint inhibitors in patients with pre-existing psoriasis: safety and efficacy. , 2021, 9, e003066.		34
117	Understanding the Biology of Melanoma and Therapeutic Implications. Hematology/Oncology Clinics of North America, 2014, 28, 437-453.	0.9	33
118	Pericardial disease in patients treated with immune checkpoint inhibitors. , 2021, 9, e002771.		33
119	Initial results from a phase I, open-label, dose escalation study of the oral BRAF inhibitor LGX818 in patients with BRAF V600 mutant advanced or metastatic melanoma Journal of Clinical Oncology, 2013, 31, 9028-9028.	0.8	32
120	Pembrolizumab for Treatment of Patients with Advanced or Unresectable Melanoma. Clinical Cancer Research, 2015, 21, 2892-2897.	3.2	31
121	Case 21-2013. New England Journal of Medicine, 2013, 369, 173-183.	13.9	30
122	Detection of Circulating BRAF in Patients with Papillary Thyroid Carcinoma. Journal of Molecular Diagnostics, 2016, 18, 100-108.	1.2	30
123	Developments in the Space of New MAPK Pathway Inhibitors for BRAF-Mutant Melanoma. Clinical Cancer Research, 2019, 25, 5735-5742.	3.2	30
124	A multicenter characterization of hepatitis associated with immune checkpoint inhibitors. Oncolmmunology, 2021, 10, 1875639.	2.1	30
125	Neutralization breadth of SARS-CoV-2 viral variants following primary series and booster SARS-CoV-2 vaccines in patients with cancer. Cancer Cell, 2022, 40, 103-108.e2.	7.7	30
126	Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naÃ⁻ve or experienced for immune checkpoint blockade. , 2022, 10, e004076.		30

#	Article	IF	CITATIONS
127	New Strategies in Melanoma: Entering the Era of Combinatorial Therapy. Clinical Cancer Research, 2015, 21, 2424-2435.	3.2	29
128	Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist, 2021, 26, 231-241.	1.9	29
129	Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK1/2 inhibitor MEK162 in <i>BRAF</i> V600-dependent advanced solid tumors Journal of Clinical Oncology, 2013, 31, 9029-9029.	0.8	28
130	Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: a retrospective multicentre analysis. European Journal of Cancer, 2022, 162, 22-33.	1.3	28
131	Signal transduction targets in Kaposi's sarcoma. Current Opinion in Oncology, 2006, 18, 456-462.	1.1	27
132	Clinical experience with combination BRAF/MEK inhibitors for melanoma with brain metastases: a real-life multicenter study. Melanoma Research, 2019, 29, 65-69.	0.6	27
133	Melanoma recurrence patterns and management after adjuvant targeted therapy: a multicentre analysis. British Journal of Cancer, 2021, 124, 574-580.	2.9	27
134	Detection of Leptomeningeal Disease Using Cell-Free DNA From Cerebrospinal Fluid. JAMA Network Open, 2021, 4, e2120040.	2.8	27
135	Management of Metastatic Melanoma in 2018. JAMA Oncology, 2018, 4, 857.	3.4	26
136	Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nature Cancer, 2021, 2, 498-502.	5.7	26
137	A phase II study of combined therapy with a BRAF inhibitor (vemurafenib) and interleukin-2 (aldesleukin) in patients with metastatic melanoma. OncoImmunology, 2018, 7, e1423172.	2.1	25
138	Rapid corticosteroid taper versus standard of care for immune checkpoint inhibitor induced nephritis: a single-center retrospective cohort study. , 2021, 9, e002292.		25
139	Absolute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
140	Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nature Communications, 2021, 12, 5955.	5.8	25
141	Results from phase II trial of HSP90 inhibitor, STA-9090 (ganetespib), in metastatic uveal melanoma. Melanoma Research, 2018, 28, 605-610.	0.6	24
142	Targeting Extracellular Matrix Remodeling Restores BRAF Inhibitor Sensitivity in BRAFi-resistant Melanoma. Clinical Cancer Research, 2020, 26, 6039-6050.	3.2	24
143	A Phase Ib/II Study of the BRAF Inhibitor Encorafenib Plus the MEK Inhibitor Binimetinib in Patients with <i>BRAFV600E/K</i> -mutant Solid Tumors. Clinical Cancer Research, 2020, 26, 5102-5112.	3.2	23
144	Clinical Utility of a Blood-Based BRAFV600E Mutation Assay in Melanoma. Molecular Cancer Therapeutics, 2014, 13, 3210-3218.	1.9	21

#	Article	IF	CITATIONS
145	Outcomes of patients with malignant melanoma treated with immunotherapy prior to or after vemurafenib Journal of Clinical Oncology, 2012, 30, 8569-8569.	0.8	21
146	Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma. Nature Communications, 2021, 12, 6023.	5.8	21
147	Renin–angiotensin–aldosterone system inhibitors and survival in patients with hypertension treated with immune checkpoint inhibitors. European Journal of Cancer, 2022, 163, 108-118.	1.3	21
148	Benefit and toxicity of programmed death-1 blockade vary by ethnicity in patients with advanced melanoma: an international multicentre observational study. British Journal of Dermatology, 2022, 187, 401-410.	1.4	21
149	STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nature Communications, 2022, 13, 1859.	5.8	21
150	Real-world incidence and impact of pneumonitis in patients with lung cancer treated with immune checkpoint inhibitors: a multi-institutional cohort study. , 2022, 10, e004670.		21
151	Circulating <i>BRAF^{V600E}</i> Levels Correlate with Treatment in Patients with Thyroid Carcinoma. Thyroid, 2018, 28, 328-339.	2.4	20
152	Anti–PD-1–Induced Pneumonitis Is Associated with Persistent Imaging Abnormalities in Melanoma Patients. Cancer Immunology Research, 2019, 7, 1755-1759.	1.6	20
153	Efficacy and Safety of Trametinib in <scp>Non-V600 <i>BRAF</i> </scp> Mutant Melanoma: A Phase II Study. Oncologist, 2021, 26, 731-e1498.	1.9	20
154	A phase I dose escalation (DE) study of ERK inhibitor, LY3214996, in advanced (adv) cancer (CA) patients (pts) Journal of Clinical Oncology, 2019, 37, 3001-3001.	0.8	20
155	Effect of ulixertinib, a novel ERK1/2 inhibitor, on the QT/QTc interval in patients with advanced solid tumor malignancies. Cancer Chemotherapy and Pharmacology, 2018, 81, 1129-1141.	1.1	19
156	Phase II study of pembrolizumab in leptomeningeal carcinomatosis Journal of Clinical Oncology, 2018, 36, 2007-2007.	0.8	19
157	New drug targets in Kaposi sarcoma. Expert Opinion on Therapeutic Targets, 2010, 14, 1355-1366.	1.5	18
158	Clinical Outcomes of Patients with Metastatic Cancer Receiving Immune Checkpoint Inhibitors in the Inpatient Setting. Oncologist, 2021, 26, 49-55.	1.9	18
159	Temporal Trends and Outcomes Among Patients Admitted for Immune-Related Adverse Events: A Single-Center Retrospective Cohort Study from 2011 to 2018. Oncologist, 2021, 26, 514-522.	1.9	18
160	Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody Journal of Clinical Oncology, 2018, 36, 9530-9530.	0.8	18
161	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	1.6	18
162	The role of mitogen-activated protein targeting in melanoma beyond BRAFV600. Current Opinion in Oncology, 2016, 28, 185-191.	1,1	17

#	Article	IF	CITATIONS
163	Thermal Ablation, Embolization, and Selective Internal Radiation Therapy Combined with Checkpoint Inhibitor Cancer Immunotherapy: Safety Analysis. Journal of Vascular and Interventional Radiology, 2021, 32, 187-195.	0.2	17
164	Hybrid capture-based next-generation sequencing (HC NGS) in melanoma to identify markers of response to anti-PD-1/PD-L1 Journal of Clinical Oncology, 2016, 34, 105-105.	0.8	16
165	Real-world assessment of response to anti-programmed cell death 1 therapy in advanced cutaneous squamous cell carcinoma. Journal of the American Academy of Dermatology, 2021, 85, 1038-1040.	0.6	15
166	Molecular targeted therapy for patients with melanoma: the promise of MAPK pathway inhibition and beyond. Expert Opinion on Investigational Drugs, 2010, 19, 1205-1216.	1.9	14
167	Molecular-targeted therapy in malignant melanoma. Expert Review of Anticancer Therapy, 2009, 9, 567-581.	1.1	13
168	Melanoma driver mutations and immune therapy. Oncolmmunology, 2016, 5, e1051299.	2.1	13
169	First-in-class oral ERK1/2 inhibitor Ulixertinib (BVD-523) in patients with advanced solid tumors: Final results of a phase I dose escalation and expansion study Journal of Clinical Oncology, 2017, 35, 2508-2508.	0.8	13
170	Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Reports Medicine, 2022, 3, 100500.	3.3	13
171	<i>NRAS</i> mutant melanoma: an overview for the clinician for melanoma management. Melanoma Management, 2016, 3, 47-59.	0.1	12
172	Dual MAPK/CDK Targeting in Melanoma: New Approaches, New Challenges. Cancer Discovery, 2018, 8, 532-533.	7.7	12
173	Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017,) Tj ET	⁻ Qq1 1 0.7	84314 rgBT
174	Secondary histiocytic sarcoma with BRAF ^{V600E} mutation after Tâ€cell acute lymphoblastic leukemia in a very young child with dramatic response to dabrafenib and trametinib. Pediatric Blood and Cancer, 2020, 67, e28200.	0.8	12
175	A phase II study of ERK inhibition by ulixertinib (BVD-523) in metastatic uveal melanoma Journal of Clinical Oncology, 2020, 38, 10036-10036.	0.8	12
176	Cytokine therapy in melanoma. Journal of Cutaneous Pathology, 2010, 37, 60-67.	0.7	11
177	Temporal Trends in Inpatient Oncology Census Before and During the COVID-19 Pandemic and Rates of Nosocomial COVID-19 Among Patients with Cancer at a Large Academic Center. Oncologist, 2021, 26, e1427-e1433.	1.9	11
178	NRAS mutation: A potential biomarker of clinical response to immune-based therapies in metastatic melanoma (MM) Journal of Clinical Oncology, 2013, 31, 9019-9019.	0.8	11
179	Phase 1 study of the p53-MDM2 inhibitor AMG 232 combined with trametinib plus dabrafenib or trametinib in patients (Pts) with <i>TP53</i> wild type (TP53WT) metastatic cutaneous melanoma (MCM) Journal of Clinical Oncology, 2017, 35, 2575-2575.	0.8	11
180	Back to the Future: Rethinking and Retooling IL2 in the Immune Checkpoint Inhibitor Era. Cancer Discovery, 2019, 9, 694-695.	7.7	10

#	Article	IF	CITATIONS
181	Association between incidental statin use and skeletal myopathies in patients treated with immune checkpoint inhibitors. Immunotherapy Advances, 2021, 1, Itab014.	1.2	10
182	Abstract CT002: Phase 3 randomized trial comparing tebentafusp with investigator's choice in first line metastatic uveal melanoma. Cancer Research, 2021, 81, CT002-CT002.	0.4	10
183	Dose escalation stage of a first-in-class phase I study of the novel oral ERK 1/2 kinase inhibitor BVD-523 (ulixertinib) in patients with advanced solid tumors Journal of Clinical Oncology, 2015, 33, 2506-2506.	0.8	10
184	Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders (AD) or major toxicity with ipilimumab (IPI) Journal of Clinical Oncology, 2016, 34, 9515-9515.	0.8	10
185	Inpatient admissions related to immune-related adverse effects (irAE) among patients treated with immune checkpoint inhibitors for advanced malignancy: A tsunami is coming, but are we ready?. Journal of Clinical Oncology, 2018, 36, 127-127.	0.8	10
186	Clinical features of acute kidney injury in patients receiving dabrafenib and trametinib. Nephrology Dialysis Transplantation, 2022, 37, 507-514.	0.4	10
187	A Phase I Trial of Bortezomib and Sorafenib in Advanced Malignant Melanoma. Oncologist, 2015, 20, 617-618.	1.9	9
188	Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 821-828.	1.7	9
189	The potential of BRAF-targeted therapy combined with immunotherapy in melanoma. Expert Review of Anticancer Therapy, 2020, 20, 131-136.	1.1	9
190	Effect of a multidisciplinary Severe Immunotherapy Complications Service on outcomes for patients receiving immune checkpoint inhibitor therapy for cancer. , 2021, 9, e002886.		9
191	A first-in-human dose phase 1 study of LY3009120 in advanced cancer patients Journal of Clinical Oncology, 2017, 35, 2507-2507.	0.8	9
192	STARBOARD: encorafenibÂ+ÂbinimetinibÂ+ pembrolizumab for first-line metastatic/unresectable <i>BRAF</i> V600-mutant melanoma. Future Oncology, 2022, 18, 2041-2051.	1.1	9
193	The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy. American Journal of Clinical Dermatology, 2016, 17, 1-10.	3.3	8
194	Phase 1 Clinical Trial Evaluating the Safety and Anti-Tumor Activity of ADP-A2M10 SPEAR T-Cells in Patients With MAGE-A10+ Head and Neck, Melanoma, or Urothelial Tumors. Frontiers in Oncology, 2022, 12, 818679.	1.3	8
195	Case 9-2020: A 64-Year-Old Man with Shortness of Breath, Cough, and Hypoxemia. New England Journal of Medicine, 2020, 382, 1150-1159.	13.9	7
196	Radiological dynamics and SITC-defined resistance types of advanced melanoma during anti-PD-1 monotherapy: an independent single-blind observational study on an international cohort. , 2021, 9, e002092.		7
197	COM701 with or without nivolumab: Results of an ongoing phase 1 study of safety, tolerability and preliminary antitumor activity in patients with advanced solid malignancies (NCT03667716) Journal of Clinical Oncology, 2021, 39, 2504-2504.	0.8	7
198	Overall survival benefit from tebentafusp in patients with best response of progressive disease Journal of Clinical Oncology, 2021, 39, 9509-9509.	0.8	7

#	Article	IF	CITATIONS
199	Plasma-based monitoring of BRAF mutations during therapy for malignant melanoma (MM) using combined exosomal RNA and cell-free DNA analysis Journal of Clinical Oncology, 2015, 33, 9017-9017.	0.8	7
200	Initial safety assessment of MAGE-A10c796TCR T-cells in two clinical trials Journal of Clinical Oncology, 2018, 36, 3056-3056.	0.8	7
201	Immune checkpoint inhibition (ICI) in advanced cutaneous squamous cell carcinoma (cSCC): Clinical response and correlative biomarker analysis Journal of Clinical Oncology, 2018, 36, 9564-9564.	0.8	7
202	Combining CTLA-4 and angiopoietin-2 blockade in patients with advanced melanoma: a phase I trial. , 2021, 9, e003318.		7
203	Rejection of benign melanocytic nevi by nevus-resident CD4 ⁺ T cells. Science Advances, 2021, 7, .	4.7	6
204	Overcoming differential tumor penetration of BRAF inhibitors using computationally guided combination therapy. Science Advances, 2022, 8, eabl6339.	4.7	6
205	Assaying for BRAF V600E in Tissue and Blood in Melanoma. Methods in Molecular Biology, 2014, 1102, 117-136.	0.4	5
206	Acute Kidney Injury Following Encorafenib and Binimetinib for Metastatic Melanoma. Kidney Medicine, 2020, 2, 373-375.	1.0	5
207	Knowledge About Risks, Benefits, and Curative Potential of Immunotherapy Among Patients with Advanced Cancer. Oncologist, 2021, 26, e2090-e2093.	1.9	5
208	352â€Updated clinical data from the squamous cell carcinoma of the head and neck (SCCHN) expansion cohort of an ongoing Ph1/1b Study of eganelisib (formerly IPI-549) in combination with nivolumab. , 2020, , .		5
209	434â€Updated clinical data from the melanoma expansion cohort of an ongoing Ph1/1b Study of eganelisib (formerly IPI-549) in combination with nivolumab. , 2020, , .		5
210	Efficacy and safety of programmed death receptor-1 (PD-1) blockade in metastatic uveal melanoma (UM) Journal of Clinical Oncology, 2016, 34, 9507-9507.	0.8	5
211	New Translational Research in the Medical Management of Orbital Melanoma. Seminars in Ophthalmology, 2016, 31, 53-58.	0.8	4
212	Long-term Overall Survival and Predictors in Anti–PD-1-naive Melanoma Patients With Brain Metastases Treated With Immune Checkpoint Inhibitors in the Real-world Setting: A Multicohort Study. Journal of Immunotherapy, 2021, 44, 307-318.	1.2	4
213	Profiling exosomal mRNAs in patients undergoing immunotherapy for malignant melanoma Journal of Clinical Oncology, 2015, 33, e22159-e22159.	0.8	4
214	IPI-549-01-A phase 1/1b first in human study of IPI-549, a PI3K-Î ³ inhibitor, as monotherapy and in combination with pembrolizumab in subjects with advanced solid tumors Journal of Clinical Oncology, 2016, 34, TPS3111-TPS3111.	0.8	4
215	Neurotoxicity associated with anti-PD1 therapy: A multi-center case series Journal of Clinical Oncology, 2017, 35, e21641-e21641.	0.8	4
216	A phase I single arm, open label clinical trial evaluating safety of MAGE-A10c796T in subjects with advanced or metastatic head and neck, melanoma, or urothelial tumors (NCT02989064) Journal of Clinical Oncology, 2017, 35, TPS3098-TPS3098.	0.8	4

#	Article	IF	CITATIONS
217	Cost of inpatient admissions for immune-related adverse effects from immune checkpoint inhibitor therapy: A single center experience Journal of Clinical Oncology, 2018, 36, 3060-3060.	0.8	4
218	Severe immune-related adverse effects (irAE) requiring hospital admission in patients treated with immune checkpoint inhibitors for advanced malignancy: Temporal trends and clinical significance Journal of Clinical Oncology, 2018, 36, 3096-3096.	0.8	4
219	Association of vitamin D intake with decreased risk of immune checkpoint inhibitor-induced colitis Journal of Clinical Oncology, 2020, 38, 89-89.	0.8	4
220	The role of targeted therapy for melanoma in the immunotherapy era. Seminars in Cutaneous Medicine and Surgery, 2018, 37, 112-119.	1.6	4
221	CTEP 9557: A dose-escalation trial of combination dabrafenib, trametinib, and AT13387 in patients with BRAF mutant solid tumors Journal of Clinical Oncology, 2020, 38, 3609-3609.	0.8	4
222	478â€COM701 in combination with BMS-986207 (anti-TIGIT antibody) and nivolumab – preliminary results of safety, tolerability and pharmacokinetics in patients with advanced solid tumors (NCT04570839). , 2021, 9, A508-A508.		4
223	Association between serum lactate dehydrogenase and cutaneous immune-related adverse events among patients on immune checkpoint inhibitors for advanced melanoma. Journal of the American Academy of Dermatology, 2022, 87, 1147-1149.	0.6	4
224	Targeting wild-type TP53 using AMG 232 in combination with MAPK inhibition in Metastatic Melanoma; a phase 1 study. Investigational New Drugs, 2022, 40, 1051-1065.	1.2	4
225	Cardiogenic Shock and Respiratory Failure in a Patient With Metastatic Melanoma Receiving Trametinib Therapy. Oncologist, 2016, 21, 1136-1137.	1.9	3
226	The Great Debate at "Melanoma Bridgeâ€, Napoli, December 2nd, 2017. Journal of Translational Medicine, 2018, 16, 101.	1.8	3
227	When is it OK to Stop Anti-Programmed Death 1 Receptor (PD-1) Therapy in Metastatic Melanoma?. American Journal of Clinical Dermatology, 2020, 21, 313-321.	3.3	3
228	Whole exome and whole transcriptome sequencing in melanoma patients to identify mechanisms of resistance to combined RAF/MEK inhibition Journal of Clinical Oncology, 2013, 31, 9015-9015.	0.8	3
229	A phase Ib study of napabucasin plus weekly paclitaxel in patients with advanced melanoma Journal of Clinical Oncology, 2017, 35, 9553-9553.	0.8	3
230	Analysis of the kinetics and effects of vemurafenib (V) + cobimetinib (C) on intratumoral and host immunity in patients (pts) with BRAFV600 mutant melanoma (BRAFmM): Implications for combination with immunotherapy Journal of Clinical Oncology, 2018, 36, 9559-9559.	0.8	3
231	Treatment with tebentafusp beyond radiographic progressive disease (PD) in metastatic uveal melanoma (mUM) Journal of Clinical Oncology, 2022, 40, 9585-9585.	0.8	3
232	Serum lactate dehydrogenase is a more useful biomarker of prognosis than serum S100B in patients withBRAF-mutant melanoma. British Journal of Dermatology, 2016, 174, 716-717.	1.4	2
233	Reply to emergency management of immuneâ€related hypophysitis: Collaboration between specialists is essential to achieve optimal outcomes. Cancer, 2018, 124, 4732-4732.	2.0	2
234	Safety, pharmacokinetic and pharmacodynamic results from dose escalation of SAR439459, a TGFÎ ² inhibitor, as monotherapy or in combination with cemiplimab in a phase 1/1b study Journal of Clinical Oncology, 2021, 39, 2510-2510.	0.8	2

#	Article	IF	CITATIONS
235	Predicting early relapse in patients with BRAF ^{V600E} melanoma with a highly sensitive blood BRAF assay Journal of Clinical Oncology, 2012, 30, 8516-8516.	0.8	2
236	A phase I study of the combination of sorafenib (Sor) and bortezomib (Bor) in patients (pts) with metastatic melanoma (MM) Journal of Clinical Oncology, 2013, 31, 9076-9076.	0.8	2
237	A phase II study of combined therapy with vemurafenib (vem) and high-dose interleukin-2 (aldesleukin;) Tj ETQq1	1 0.7843 0.8	314 _. rgBT /Ov
238	Association of plasma exosomal mRNA changes with long-term durable response to ipilimumab (IPI) in metastatic melanoma (MM) patients Journal of Clinical Oncology, 2016, 34, 3037-3037.	0.8	2
239	Autoimmune genetic variants as germline biomarkers of response in melanoma immunotherapy treatment Journal of Clinical Oncology, 2018, 36, 3079-3079.	0.8	2
240	Characterization of immune related hepatitis (irH) from immune checkpoint inhibitors (ICIs) Journal of Clinical Oncology, 2018, 36, 3087-3087.	0.8	2
241	Predictable early onset high-dose-glucocorticoid-associated-irAE and its predictive role in anti-PD-1 monotherapy treated advanced melanoma patients Journal of Clinical Oncology, 2019, 37, 9544-9544.	0.8	2
242	Heterogeneous response and irAE patterns in advanced melanoma patients treated with anti-PD-1 monotherapy from different ethnic groups: Subtype distribution discrepancy and beyond Journal of Clinical Oncology, 2020, 38, 10020-10020.	0.8	2
243	A phase I study evaluating COM701 monotherapy and in combination with nivolumab in patients with advanced solid malignancies Journal of Clinical Oncology, 2020, 38, TPS23-TPS23.	0.8	2
244	Tolerance and efficacy of BRAF plus MEK inhibition in patients with melanoma who have received PD-1 based therapy Journal of Clinical Oncology, 2018, 36, 9540-9540.	0.8	2
245	Clinical outcomes of patients with stage IV cancer receiving immune checkpoint inhibitors in the inpatient setting Journal of Clinical Oncology, 2019, 37, 6634-6634.	0.8	2
246	For Whom the Bell Tolls? A Toll-Like Receptor 9 Agonist's Journey from Vaccine Adjuvant to Promising Agent in Anti–PD-1–Resistant Melanoma. Cancer Discovery, 2021, 11, 2960-2960.	7.7	2
247	CMET-20. EVIDENCE OF CNS RESPONSE OF PEMBROLIZUMAB FOR LEPTOMENINGEAL CARCINOMATOSIS AT A SINGLE CELL RESOLUTION. Neuro-Oncology, 2018, 20, vi57-vi58.	0.6	1
248	Forestalling BRAF-Inhibitor Resistance in a Shocking Way. Clinical Cancer Research, 2018, 24, 5496-5498.	3.2	1
249	The use of cryoablation to overcome resistance to PD-1 blockade in unresectable melanoma Journal of Clinical Oncology, 2021, 39, 9538-9538.	0.8	1
250	Characterizing the tumor and immune landscape of melanoma patients treated with combined checkpoint blockade and MAPK targeted therapy Journal of Clinical Oncology, 2021, 39, 9522-9522.	0.8	1
251	Discrepancies in response and immune-related adverse events (irAE) of anti-PD-1 monotherapy between races and primary sites in patients (pts) with advanced nonacral cutaneous melanoma (NACM) Journal of Clinical Oncology, 2021, 39, 9530-9530.	0.8	1
252	Secondary histiocytic sarcoma with <i>BRAF^{V600E}</i> mutation responsive to MAPKâ€ŧargeted therapy presenting with recurrence with mTOR mutation responsive to mTORâ€ŧargeted therapy. Pediatric Blood and Cancer, 2021, 68, e29166.	0.8	1

#	Article	IF	CITATIONS
253	285â€Phase I clinical trial evaluating the safety of ADP-A2M10 in patients with MAGE-A10 ⁺ head and neck, melanoma, or urothelial tumors. , 2020, , .		1
254	Phase II study of dabrafenib and trametinib following progression on BRAF inhibitor monotherapy in metastaticmelanoma: Exploration of clinical and molecular predictors of response Journal of Clinical Oncology, 2015, 33, e20051-e20051.	0.8	1
255	Retrospective analysis of activity of pembrolizumab (pembro) in melanoma patients (pts) with brain metastasis (BM) Journal of Clinical Oncology, 2016, 34, 2071-2071.	0.8	1
256	Clinical activity of anti- <i>programmed death-1</i> (PD-1) agents in acral and mucosal melanoma Journal of Clinical Oncology, 2016, 34, 9516-9516.	0.8	1
257	Survival outcomes of nivolumab (NIVO) given sequentially with ipilimumab (IPI) in patients with advanced melanoma (CheckMate 064) Journal of Clinical Oncology, 2016, 34, 9517-9517.	0.8	1
258	Inflammatory arthritis: An under-recognized immune-relate adverse effect Journal of Clinical Oncology, 2017, 35, e14565-e14565.	0.8	1
259	Mutation burden as a biomarker of response to immune checkpoint therapy in nine solid cancers Journal of Clinical Oncology, 2017, 35, 35-35.	0.8	1
260	A phase II study of cryoablation (cryo) of an enlarging tumor in patients (pts) with advanced lung cancer or melanoma receiving post-progression immune checkpoint inhibition (ICI) Journal of Clinical Oncology, 2019, 37, e14243-e14243.	0.8	1
261	Predictive plasma proteomic biomarkers of immunotherapy toxicity in patients (pts) with metastatic melanoma (MM) Journal of Clinical Oncology, 2018, 36, e21569-e21569.	0.8	1
262	Liquid biopsy using plasma proteomic profiling to reveal predictors of immunotherapy response Journal of Clinical Oncology, 2019, 37, 130-130.	0.8	1
263	IMMU-01. SINGLE CELL SEQUENCING OF MELANOMA BRAIN METASTASES UNVEILS HETEROGENEITY OF THE TUMOR MICROENVIRONMENT IN RESPONSE TO IMMUNE CHECKPOINT BLOCKADE. Neuro-Oncology, 2020, 22, ii104-ii104.	0.6	1
264	Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 730-737.	1.8	1
265	Abstract CT160: BVD-523FB (Ulixertinib) in Patients with Tumors with BRAF Fusions, or with Non-V600E, Non-V600K BRAF Mutations: Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Sub-protocol EAY131-Z1L. Cancer Research, 2022, 82, CT160-CT160.	0.4	1
266	A two-part, phase II, multi-center study of the ERK inhibitor ulixertinib (BVD-523) for patients with advanced malignancies harboring MEK or atypical BRAF alterations (BVD-523-ABC) Journal of Clinical Oncology, 2022, 40, TPS3172-TPS3172.	0.8	1
267	A first-in-human, phase 1 study of ASTX029, a dual-mechanism inhibitor of ERK1/2, in relapsed/refractory solid tumors Journal of Clinical Oncology, 2022, 40, 9085-9085.	0.8	1
268	Abstract CT244: A phase 1a/1b study of STK-012, an α/β IL-2 receptor selective partial agonist as monotherapy and in combination with pembrolizumab in advanced solid tumors (NCT05098132). Cancer Research, 2022, 82, CT244-CT244.	0.4	1
269	Single-cell profiling of human heart and blood in immune checkpoint inhibitor-associated myocarditis Journal of Clinical Oncology, 2022, 40, 2507-2507.	0.8	1
270	Studying Rac1-induced tumorigenesis suggests antioxidants may help prevent and treat Kaposi's sarcoma. Future Oncology, 2009, 5, 949-952.	1.1	0

#	Article	IF	CITATIONS
271	BMET-04LEPTOMENINGEAL CARCINOMATOSIS IN MELANOMA. Neuro-Oncology, 2015, 17, v45.4-v45.	0.6	0
272	Are we entering the era of combination therapy for melanoma?. Melanoma Management, 2017, 4, 5-8.	0.1	0
273	CMET-16. THE ROLE OF SURGICAL RESECTION OF MELANOMA BRAIN METASTASES IN THE IMMUNOTHERAPY ERA. Neuro-Oncology, 2017, 19, vi42-vi42.	0.6	0
274	GENE-18. DIVERGENT CLONAL EVOLUTION OF MELANOMA BRAIN METASTASES DURING TREATMENT WITH IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi106-vi107.	0.6	0
275	CMET-16. THE ROLE OF SURGICAL RESECTION OF MELANOMA BRAIN METASTASES IN THE IMMUNOTHERAPY ERA. Neuro-Oncology, 2018, 20, vi56-vi57.	0.6	0
276	NIMG-63. ADVANCED IMAGING FOR ASSESSING VOLUMETRIC RESPONSES IN BRAIN METASTASES TREATED WITH CHECKPOINT BLOCKADE. Neuro-Oncology, 2018, 20, vi190-vi190.	0.6	0
277	The metastatic dissemination of a squamous cell carcinoma arising from an epidermal cyst and subsequent failure to respond to programmed death 1 inhibition. JAAD Case Reports, 2019, 5, 375-378.	0.4	0
278	CMET-33. PHASE II STUDY OF PALBOCICLIB IN BRAIN METASTASES HARBORING CDK PATHWAY ALTERATIONS. Neuro-Oncology, 2019, 21, vi58-vi59.	0.6	0
279	The "Great Debate―at Immunotherapy Bridge 2020, December 3rd, 2020. Journal of Translational Medicine, 2021, 19, 144.	1.8	0
280	Improving patient and caregiver understanding of risks and benefits of immunotherapy for melanoma or lung cancer Journal of Clinical Oncology, 2021, 39, TPS6596-TPS6596.	0.8	0
281	Advanced imaging to assess longitudinal vascular changes in brain metastases treated with checkpoint inhibition Journal of Clinical Oncology, 2021, 39, 3059-3059.	0.8	0
282	Knowledge about risks, benefits, and curative potential of immunotherapy among patients with advanced lung cancer or melanoma Journal of Clinical Oncology, 2021, 39, 6579-6579.	0.8	0
283	Impact of multidisciplinary severe immunotherapy complication service on outcomes for cancer patients receiving immune checkpoint inhibition Journal of Clinical Oncology, 2021, 39, 2654-2654.	0.8	0
284	Survival patterns following brain metastases for patients with melanoma in the targeted therapy era Journal of Clinical Oncology, 2013, 31, 9064-9064.	0.8	0
285	Emerging Clinical Issues in Melanoma in the Molecularly Targeted Era. Methods in Molecular Biology, 2014, 1102, 11-26.	0.4	0
286	Phase I-II study of the combination vemurafenib plus peg-interferon in advanced melanoma patients harboring the V600BRAF mutation Journal of Clinical Oncology, 2014, 32, TPS9105-TPS9105.	0.8	0
287	Palliative care and hospice use among melanoma patients treated with immunotherapy Journal of Clinical Oncology, 2015, 33, 116-116.	0.8	0
288	Functional characterization of non-V600 BRAF mutations and their response to Trametinib (Tram) Journal of Clinical Oncology, 2016, 34, 9537-9537.	0.8	0

#	Article	IF	CITATIONS
289	ASN003, a highly selective BRAF and PI3K inhibitor: Preclinical and phase 1 clinical data in patients with advanced solid tumors Journal of Clinical Oncology, 2017, 35, e14102-e14102.	0.8	0
290	Expression quantitative trait loci (eQTLs) as germline determinants of melanoma immunotherapy response Journal of Clinical Oncology, 2017, 35, 3017-3017.	0.8	0
291	Phylogenetic analysis of longitudinal melanoma samples to reveal convergent evolution and markers of immunotherapy resistance Journal of Clinical Oncology, 2018, 36, 9581-9581.	0.8	0
292	Association of anti-PD-1 (PD1) induced pneumonitis with persistent imaging and lung function abnormalities in some patients Journal of Clinical Oncology, 2018, 36, e15147-e15147.	0.8	0
293	Prognostic models for advanced melanoma patients treated with anti-PD-1 monotherapy Journal of Clinical Oncology, 2019, 37, 133-133.	0.8	0
294	A phase I study evaluating COM701 in patients with advanced solid tumors Journal of Clinical Oncology, 2019, 37, TPS2657-TPS2657.	0.8	0
295	Clinical features and response to immune checkpoint inhibitors (ICIs) in pregnancy-associated melanoma (PAM) Journal of Clinical Oncology, 2019, 37, 9564-9564.	0.8	0
296	Organ site-specific radiological responses in anti-PD-1 monotherapy treated advanced melanoma patients Journal of Clinical Oncology, 2019, 37, 9552-9552.	0.8	0
297	Investigating the tumor immune infiltrate for populations that predict immune-related adverse events (irAEs) in patients receiving PD-1 inhibitors Journal of Clinical Oncology, 2020, 38, 3116-3116.	0.8	0
298	The use of plasma proteomic markers to understand the biology of immunotherapy response Journal of Clinical Oncology, 2020, 38, 10062-10062.	0.8	0
299	Advanced imaging to assess longitudinal vascular changes in brain metastases treated with immune checkpoint inhibition Journal of Clinical Oncology, 2020, 38, 2529-2529.	0.8	0
300	IMMU-02. GENOMIC AND TRANSCRIPTOMIC CORRELATES OF IMMUNOTHERAPY RESPONSE WITHIN THE TUMOR MICROENVIRONMENT OF LEPTOMENINGEAL METASTASES. Neuro-Oncology, 2021, 23, vi92-vi92.	0.6	0
301	804â€Real-world incidence and impact of pneumonitis in lung cancer patients treated with immune checkpoint inhibitors. , 2021, 9, A841-A841.		0
302	BIOM-04. SENSITIVE DETECTION OF LEPTOMENINGEAL DISEASE USING CELL-FREE DNA FROM CEREBROSPINAL FLUID. Neuro-Oncology, 2021, 23, vi10-vi10.	0.6	0
303	NIMG-05. ADVANCED IMAGING TO ASSESS LONGITUDINAL VASCULAR CHANGES IN BRAIN METASTASES TREATED WITH CHECKPOINT INHIBITION. Neuro-Oncology, 2020, 22, ii147-ii147.	0.6	0
304	194â€A multicenter characterization of chronic toxicities following adjuvant anti-PD-1 therapy for high risk resected melanoma. , 2020, , .		0
305	CTIM-02. PHASE II STUDY OF IPILIMUMAB AND NIVOLUMAB IN LEPTOMENINGEAL CARCINOMATOSIS. Neuro-Oncology, 2021, 23, vi49-vi49.	0.6	0
306	OUP accepted manuscript. Oncologist, 2022, , .	1.9	0

#	Article	IF	CITATIONS
307	MO344: Effect of Cancer Stage on Adverse Kidney Outcomes in Patients With Advanced Melanoma Treated With Immune Checkpoint Inhibitors. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	Ο
308	Capturing uveal melanoma (UM) global practice patterns and clinical outcomes in the collaborative ocular melanoma natural history (OMNi) study (NCT04588662) Journal of Clinical Oncology, 2022, 40, TPS9610-TPS9610.	0.8	0
309	ARTISTRY-6: Nemvaleukin alfa monotherapy in patients with advanced mucosal and cutaneous melanoma Journal of Clinical Oncology, 2022, 40, TPS9609-TPS9609.	0.8	0