
Yuning Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164766/publications.pdf Version: 2024-02-01

YUNING SONG

#	Article	IF	CITATIONS
1	Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9, 2717.	12.8	119
2	Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular and Molecular Life Sciences, 2016, 73, 2959-2968.	5.4	83
3	CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Scientific Reports, 2016, 6, 22024.	3.3	54
4	Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System. Molecular Therapy - Nucleic Acids, 2020, 21, 523-526.	5.1	48
5	CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biology, 2018, 19, 164.	8.8	39
6	Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC Biology, 2020, 18, 111.	3.8	28
7	CRISPR/Cas9–Mediated Mutation of αA-Crystallin Gene Induces Congenital Cataracts in Rabbits. , 2017, 58, BIO34.		26
8	Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Science China Life Sciences, 2021, 64, 1355-1367.	4.9	26
9	Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death and Disease, 2020, 11, 36.	6.3	25
10	D-repeat in the <i>XIST</i> gene is required for X chromosome inactivation. RNA Biology, 2016, 13, 172-176.	3.1	24
11	Mutation of the Sp1 binding site in the 5′ flanking region of <i>SRY</i> causes sex reversal in rabbits. Oncotarget, 2017, 8, 38176-38183.	1.8	23
12	CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3′ UTR induce graying in rabbit. Scientific Reports, 2017, 7, 1569.	3.3	19
13	Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits. EBioMedicine, 2018, 36, 517-525.	6.1	19
14	Corrigendum. G3: Genes, Genomes, Genetics, 2018, 8, 2833-2840.	1.8	19
15	Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	18
16	The disrupted balance between hair follicles and sebaceous glands in Hoxc13 â€ablated rabbits. FASEB Journal, 2019, 33, 1226-1234.	0.5	18
17	Highly efficient base editing with expanded targeting scope using SpCas9â€NG in rabbits. FASEB Journal, 2020, 34, 588-596.	0.5	18
18	CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. Molecular Therapy - Nucleic Acids, 2020, 21, 1062-1073.	5.1	16

YUNING SONG

#	Article	IF	CITATIONS
19	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	8.2	16
20	LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. , 2019, 10, 102.		15
21	CRISPR/Cas9-mediated mosaic mutation of <i>SRY</i> gene induces hermaphroditism in rabbits. Bioscience Reports, 2018, 38, .	2.4	14
22	Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant. Cell Discovery, 2019, 5, 58.	6.7	14
23	Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2. Cellular and Molecular Life Sciences, 2020, 77, 3265-3277.	5.4	14
24	Disruption of imprinted gene expression and DNA methylation status in porcine parthenogenetic fetuses and placentas. Gene, 2014, 547, 351-358.	2.2	13
25	Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2356-2367.	3.8	11
26	Large-scale genomic deletions mediated by CRISPR/Cas9 system. Oncotarget, 2017, 8, 5647-5647.	1.8	9
27	Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019, 76, 4155-4164.	5.4	7
28	Tandem repeat knockout utilizing the CRISPR/Cas9 system in human cells. Gene, 2016, 582, 122-127.	2.2	4
29	Reduced off-target effect of NG-BE4max by using NG-HiFi system. Molecular Therapy - Nucleic Acids, 2021, 25, 168-172.	5.1	3
30	Faithful expression of imprinted genes in donor cells of SCNT cloned pigs. FEBS Letters, 2015, 589, 2066-2072.	2.8	2
31	DNA methylation-mediated silencing of FLT1 in parthenogenetic porcine placentas. Placenta, 2017, 58, 86-89.	1.5	2
32	The minimal promoter (P1) of <i>Xist</i> is non-essential for X chromosome inactivation. RNA Biology, 2020, 17, 623-629.	3.1	1