
John A Dani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1647390/publications.pdf Version: 2024-02-01

ΙΟΗΝ Δ ΠΛΝΙ

#	Article	IF	CITATIONS
1	The serotonin 2A receptor agonist TCBâ€2 attenuates heavy alcohol drinking and alcoholâ€induced midbrain inhibitory plasticity. Addiction Biology, 2022, 27, e13147.	2.6	9
2	Activation of a Locus Coeruleus to Dorsal Hippocampus Noradrenergic Circuit Facilitates Associative Learning. Frontiers in Cellular Neuroscience, 2022, 16, 887679.	3.7	10
3	Ethanol produces multiple electrophysiological effects on ventral tegmental area neurons in freely moving rats. Addiction Biology, 2021, 26, e12899.	2.6	7
4	Fear conditioning potentiates the hippocampal <scp>CA1</scp> commissural pathway in vivo and increases awake phase sleep. Hippocampus, 2021, 31, 1154-1175.	1.9	9
5	Midbrain dopaminergic innervation of the hippocampus is sufficient to modulate formation of aversive memories. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
6	Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology, 2020, 177, 108256.	4.1	64
7	Acute Nicotine Exposure Alters Ventral Tegmental Area Inhibitory Transmission and Promotes Diazepam Consumption. ENeuro, 2020, 7, ENEURO.0348-19.2020.	1.9	8
8	5-HT _{2A} receptor activation normalizes stress-induced dysregulation of GABAergic signaling in the ventral tegmental area. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27028-27034.	7.1	18
9	Adolescent Nicotine Exposure Alters GABAA Receptor Signaling in the Ventral Tegmental Area and Increases Adult Ethanol Self-Administration. Cell Reports, 2018, 23, 68-77.	6.4	37
10	Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annual Review of Pharmacology and Toxicology, 2018, 58, 547-566.	9.4	26
11	Inhibitory Plasticity of Mesocorticolimbic Circuits in Addiction and Mental Illness. Trends in Neurosciences, 2018, 41, 898-910.	8.6	23
12	The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. Journal of Neurochemistry, 2017, 142, 130-143.	3.9	125
13	Dopamine receptor activity participates in hippocampal synaptic plasticity associated with novel object recognition. European Journal of Neuroscience, 2017, 45, 138-146.	2.6	35
14	Dopamine Regulates Aversive Contextual Learning and Associated InÂVivo Synaptic Plasticity in the Hippocampus. Cell Reports, 2016, 14, 1930-1939.	6.4	113
15	Stress Increases Ethanol Self-Administration via a Shift toward Excitatory GABA Signaling in the Ventral Tegmental Area. Neuron, 2016, 92, 493-504.	8.1	81
16	Transcription factor Pitx3 mutant mice as a model for Parkinson's disease. Frontiers in Biology, 2016, 11, 427-438.	0.7	7
17	Translational control by elF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine. ELife, 2016, 5, .	6.0	44
18	Translational control of nicotine-evoked synaptic potentiation in mice and neuronal responses in human smokers by eIF2α. ELife, 2016, 5, .	6.0	19

JOHN A DANI

#	Article	IF	CITATIONS
19	elF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. ELife, 2016, 5, .	6.0	26
20	Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Annals of the New York Academy of Sciences, 2015, 1349, 46-63.	3.8	71
21	Reinforcement sensitivity underlying treatment-seeking smokers' affect, smoking reinforcement motives, and affective responses Psychology of Addictive Behaviors, 2015, 29, 300-311.	2.1	8
22	Dopamine and norepinephrine receptors participate in methylphenidate enhancement of inÂvivo hippocampal synaptic plasticity. Neuropharmacology, 2015, 90, 23-32.	4.1	43
23	Nicotine Withdrawal. Current Topics in Behavioral Neurosciences, 2015, 24, 99-123.	1.7	100
24	Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(â^'/â^') mice. Neurobiology of Aging, 2015, 36, 3314-3320.	3.1	21
25	Withdrawal Symptoms and Nicotine Dependence Severity Predict Virtual Reality Craving in Cigarette-Deprived Smokers. Nicotine and Tobacco Research, 2015, 17, 796-802.	2.6	33
26	Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine. International Review of Neurobiology, 2015, 124, 3-19.	2.0	200
27	Cigarettes and alcohol: The influence of nicotine on operant alcohol self-administration and the mesolimbic dopamine system. Biochemical Pharmacology, 2015, 97, 550-557.	4.4	14
28	Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release. Frontiers in Synaptic Neuroscience, 2014, 6, 19.	2.5	35
29	Dopamine D1 and D5 Receptors Modulate Spike Timing-Dependent Plasticity at Medial Perforant Path to Dentate Granule Cell Synapses. Journal of Neuroscience, 2014, 34, 15888-15897.	3.6	58
30	Nicotine Decreases Ethanol-Induced Dopamine Signaling and Increases Self-Administration via Stress Hormones. Neuron, 2013, 79, 530-540.	8.1	83
31	Potential substrates for nicotine and alcohol interactions: A focus on the mesocorticolimbic dopamine system. Biochemical Pharmacology, 2013, 86, 1181-1193.	4.4	68
32	Mesolimbic Dopamine and Habenulo-Interpeduncular Pathways in Nicotine Withdrawal. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012138-a012138.	6.2	21
33	Nicotinic acetylcholine receptors as therapeutic targets: Emerging frontiers in basic research and clinical science—Editorial comments. Biochemical Pharmacology, 2013, 86, 1041.	4.4	2
34	Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson's disease. Neurobiology of Aging, 2012, 33, 1001.e7-1001.e16.	3.1	45
35	Withdrawal from Chronic Nicotine Exposure Alters Dopamine Signaling Dynamics in the Nucleus Accumbens. Biological Psychiatry, 2012, 71, 184-191.	1.3	114
36	Quantitative unit classification of ventral tegmental area neurons in vivo. Journal of Neurophysiology, 2012, 107, 2808-2820.	1.8	22

JOHN A DANI

#	Article	IF	CITATIONS
37	Neurophysiology of Nicotine Addiction. Journal of Addiction Research & Therapy, 2012, 01, .	0.2	28
38	Historical and current perspective on tobacco use and nicotine addiction. Trends in Neurosciences, 2011, 34, 383-392.	8.6	45
39	Reward, Addiction, Withdrawal to Nicotine. Annual Review of Neuroscience, 2011, 34, 105-130.	10.7	297
40	Route of Nicotine Administration Influences In Vivo Dopamine Neuron Activity: Habituation, Needle Injection, and Cannula Infusion. Journal of Molecular Neuroscience, 2010, 40, 164-171.	2.3	23
41	Addictive Nicotine Alters Local Circuit Inhibition during the Induction of <i>In Vivo</i> Hippocampal Synaptic Potentiation. Journal of Neuroscience, 2010, 30, 6443-6453.	3.6	32
42	In vitro identification and electrophysiological characterization of dopamine neurons in the ventral tegmental area. Neuropharmacology, 2010, 59, 431-436.	4.1	339
43	Controls of Tonic and Phasic Dopamine Transmission in the Dorsal and Ventral Striatum. Molecular Pharmacology, 2009, 76, 396-404.	2.3	146
44	Dopamine Signaling Differences in the Nucleus Accumbens and Dorsal Striatum Exploited by Nicotine. Journal of Neuroscience, 2009, 29, 4035-4043.	3.6	134
45	Age dependent nicotinic influences over dopamine neuron synaptic plasticity. Biochemical Pharmacology, 2009, 78, 686-692.	4.4	47
46	Dopamine Enables In Vivo Synaptic Plasticity Associated with the Addictive Drug Nicotine. Neuron, 2009, 63, 673-682.	8.1	93
47	The role of transcription factor Pitx3 in dopamine neuron development and Parkinson's disease. Current Topics in Medicinal Chemistry, 2009, 9, 855-9.	2.1	50
48	Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2007, 74, 1120-1133.	4.4	141
49	Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annual Review of Pharmacology and Toxicology, 2007, 47, 699-729.	9.4	1,072
50	Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 2005, 8, 1465-1470.	14.8	342
51	Nicotinic Cholinergic Synaptic Mechanisms in the Ventral Tegmental Area Contribute to Nicotine Addiction. Learning and Memory, 2004, 11, 60-69.	1.3	165
52	Selective Dopamine Filter of Glutamate Striatal Afferents. Neuron, 2004, 42, 522-524.	8.1	41
53	Differential Desensitization and Distribution of Nicotinic Acetylcholine Receptor Subtypes in Midbrain Dopamine Areas. Journal of Neuroscience, 2003, 23, 3176-3185.	3.6	317
54	Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology, 2002, 53, 590-605.	3.6	372

JOHN A DANI

#	Article	IF	CITATIONS
55	Overview of nicotinic receptors and their roles in the central nervous system. Biological Psychiatry, 2001, 49, 166-174.	1.3	369
56	Nicotinic Receptor Activity Alters Synaptic Plasticity. Scientific World Journal, The, 2001, 1, 393-395.	2.1	14
57	Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 2001, 4, 1224-1229.	14.8	515
58	Properties Underlying the Influence of Nicotinic Receptors on Neuronal Excitability and Epilepsy. Epilepsia, 2000, 41, 1063-1065.	5.1	11
59	Regulation of the sensitivity of acetylcholine receptors to nicotine in rat habenula neurons. Journal of Physiology, 2000, 529, 579-597.	2.9	10
60	Variations in desensitization of nicotinic acetylcholine receptors from hippocampus and midbrain dopamine areas. European Journal of Pharmacology, 2000, 393, 31-38.	3.5	79
61	Inhibition and Disinhibition of Pyramidal Neurons by Activation of Nicotinic Receptors on Hippocampal Interneurons. Journal of Neurophysiology, 2000, 83, 2682-2690.	1.8	211
62	Nicotinic Modulation of Glutamate and GABA Synaptic Transmission in Hippocampal Neurons. Annals of the New York Academy of Sciences, 1999, 868, 591-610.	3.8	188
63	Calcium Flux Through Predominantly Independent Purinergic ATP and Nicotinic Acetylcholine Receptors. Journal of Neurophysiology, 1997, 77, 1407-1417.	1.8	49
64	Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 1997, 390, 401-404.	27.8	734
65	Molecular and Cellular Aspects of Nicotine Abuse. Neuron, 1996, 16, 905-908.	8.1	584
66	Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 1996, 383, 713-716.	27.8	892
67	Structure and function of glutamate and nicotinic acetylcholine receptors. Current Opinion in Neurobiology, 1995, 5, 310-317.	4.2	60
68	Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron, 1992, 8, 127-134.	8.1	448
69	MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse, 1991, 7, 207-215.	1.2	97