Christian M Nefzger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1647055/publications.pdf

Version: 2024-02-01

566801 433756 31 2,126 15 31 citations h-index g-index papers 31 31 31 4344 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nature Communications, 2022, 13, 1658.	5.8	7
2	Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential. Npj Regenerative Medicine, 2022, 7 , .	2.5	4
3	Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Frontiers in Cell and Developmental Biology, 2021, 9, 737880.	1.8	7
4	Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity. PLoS Biology, 2021, 19, e3001394.	2.6	18
5	Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell, 2020, 27, 646-662.e7.	5.2	82
6	ReprogrammingÂroadmap reveals route toÂhuman induced trophoblast stem cells. Nature, 2020, 586, 101-107.	13.7	131
7	TINC— A Method to Dissect Regulatory Complexes at Single-Locus Resolution— Reveals an Extensive Protein Complex at the Nanog Promoter. Stem Cell Reports, 2020, 15, 1246-1259.	2.3	12
8	Aging of intestinal stem cells and associated niche. Advances in Stem Cells and Their Niches, 2020, 4, 25-40.	0.1	1
9	Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity, 2019, 51, 337-350.e7.	6.6	329
10	Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family. Stem Cell Research, 2019, 34, 101353.	0.3	11
11	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	4.5	36
12	Propagation and Maintenance of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2019, 1940, 33-45.	0.4	6
13	Production of High-Titer Lentiviral Particles for Stable Genetic Modification of Mammalian Cells. Methods in Molecular Biology, 2019, 1940, 47-61.	0.4	7
14	Generation of Mouse-Induced Pluripotent Stem Cells by Lentiviral Transduction. Methods in Molecular Biology, 2019, 1940, 63-76.	0.4	3
15	Fine Tuning of Canonical Wnt Stimulation Enhances Differentiation of Pluripotent Stem Cells Independent of β-Catenin-Mediated T-Cell Factor Signaling. Stem Cells, 2018, 36, 822-833.	1.4	12
16	Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. Journal of Neuroscience Methods, 2018, 293, 53-58.	1.3	9
17	SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program. ELife, 2018, 7, .	2.8	44
18	Identification of dynamic undifferentiated cell states within the male germline. Nature Communications, 2018, 9, 2819.	5.8	68

#	Article	IF	CITATIONS
19	A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Research, 2018, 28, 1193-1206.	2.4	123
20	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18 , $552-562$.	7.0	551
21	DEAD-Box RNA Binding Protein DDX5: Not a Black-Box during Reprogramming. Cell Stem Cell, 2017, 20, 419-420.	5.2	4
22	New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells. Stem Cells, 2017, 35, 626-640.	1.4	18
23	Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nature Methods, 2017, 14, 1055-1062.	9.0	128
24	Cell Type of Origin Dictates the Route to Pluripotency. Cell Reports, 2017, 21, 2649-2660.	2.9	49
25	Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogramming. Cell Stem Cell, 2017, 21, 834-845.e6.	5.2	95
26	A Versatile Strategy for Isolating a Highly Enriched Population of Intestinal Stem Cells. Stem Cell Reports, 2016, 6, 321-329.	2.3	27
27	A predictive computational framework for direct reprogramming between human cell types. Nature Genetics, 2016, 48, 331-335.	9.4	263
28	Snail regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO Journal, 2015, 34, 1319-1335.	3.5	50
29	Isolation of Reprogramming Intermediates During Generation of Induced Pluripotent Stem Cells from Mouse Embryonic Fibroblasts. Methods in Molecular Biology, 2015, 1330, 205-218.	0.4	3
30	GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells. Differentiation, 2014, 87, 193-199.	1.0	11
31	Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model. Journal of Visualized Experiments, 2014, , e51728.	0.2	17